MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite2 Unicode version

Theorem isfinite2 7115
Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
isfinite2  |-  ( A 
~<  om  ->  A  e.  Fin )

Proof of Theorem isfinite2
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 6870 . . 3  |-  Rel  ~<
21brrelex2i 4730 . 2  |-  ( A 
~<  om  ->  om  e.  _V )
3 sdomdom 6889 . . . 4  |-  ( A 
~<  om  ->  A  ~<_  om )
4 domeng 6876 . . . 4  |-  ( om  e.  _V  ->  ( A  ~<_  om  <->  E. y ( A 
~~  y  /\  y  C_ 
om ) ) )
53, 4syl5ib 210 . . 3  |-  ( om  e.  _V  ->  ( A  ~<  om  ->  E. y
( A  ~~  y  /\  y  C_  om )
) )
6 ensym 6910 . . . . . . . . . . 11  |-  ( A 
~~  y  ->  y  ~~  A )
76ad2antrl 708 . . . . . . . . . 10  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
y  ~~  A )
8 simpl 443 . . . . . . . . . 10  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  A  ~<  om )
9 ensdomtr 6997 . . . . . . . . . 10  |-  ( ( y  ~~  A  /\  A  ~<  om )  ->  y  ~<  om )
107, 8, 9syl2anc 642 . . . . . . . . 9  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
y  ~<  om )
11 sdomnen 6890 . . . . . . . . 9  |-  ( y 
~<  om  ->  -.  y  ~~  om )
1210, 11syl 15 . . . . . . . 8  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  -.  y  ~~  om )
13 simpr 447 . . . . . . . . 9  |-  ( ( A  ~~  y  /\  y  C_  om )  -> 
y  C_  om )
14 unbnn 7113 . . . . . . . . . 10  |-  ( ( om  e.  _V  /\  y  C_  om  /\  A. z  e.  om  E. w  e.  y  z  e.  w )  ->  y  ~~  om )
15143expia 1153 . . . . . . . . 9  |-  ( ( om  e.  _V  /\  y  C_  om )  -> 
( A. z  e. 
om  E. w  e.  y  z  e.  w  -> 
y  ~~  om )
)
162, 13, 15syl2an 463 . . . . . . . 8  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
( A. z  e. 
om  E. w  e.  y  z  e.  w  -> 
y  ~~  om )
)
1712, 16mtod 168 . . . . . . 7  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  -.  A. z  e.  om  E. w  e.  y  z  e.  w )
18 rexnal 2554 . . . . . . . . 9  |-  ( E. z  e.  om  -.  E. w  e.  y  z  e.  w  <->  -.  A. z  e.  om  E. w  e.  y  z  e.  w
)
19 omsson 4660 . . . . . . . . . . . . 13  |-  om  C_  On
20 sstr 3187 . . . . . . . . . . . . 13  |-  ( ( y  C_  om  /\  om  C_  On )  ->  y  C_  On )
2119, 20mpan2 652 . . . . . . . . . . . 12  |-  ( y 
C_  om  ->  y  C_  On )
22 nnord 4664 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  Ord  z )
23 ssel2 3175 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  C_  On  /\  w  e.  y )  ->  w  e.  On )
24 vex 2791 . . . . . . . . . . . . . . . . . . 19  |-  w  e. 
_V
2524elon 4401 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  On  <->  Ord  w )
2623, 25sylib 188 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  On  /\  w  e.  y )  ->  Ord  w )
27 ordtri1 4425 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  w  /\  Ord  z )  ->  (
w  C_  z  <->  -.  z  e.  w ) )
2826, 27sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  C_  On  /\  w  e.  y )  /\  Ord  z )  ->  ( w  C_  z 
<->  -.  z  e.  w
) )
2928an32s 779 . . . . . . . . . . . . . . 15  |-  ( ( ( y  C_  On  /\ 
Ord  z )  /\  w  e.  y )  ->  ( w  C_  z  <->  -.  z  e.  w ) )
3029ralbidva 2559 . . . . . . . . . . . . . 14  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( A. w  e.  y  w  C_  z  <->  A. w  e.  y  -.  z  e.  w ) )
31 unissb 3857 . . . . . . . . . . . . . 14  |-  ( U. y  C_  z  <->  A. w  e.  y  w  C_  z
)
32 ralnex 2553 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  y  -.  z  e.  w  <->  -.  E. w  e.  y  z  e.  w )
3332bicomi 193 . . . . . . . . . . . . . 14  |-  ( -. 
E. w  e.  y  z  e.  w  <->  A. w  e.  y  -.  z  e.  w )
3430, 31, 333bitr4g 279 . . . . . . . . . . . . 13  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( U. y  C_  z  <->  -.  E. w  e.  y  z  e.  w ) )
35 ordunisssuc 4495 . . . . . . . . . . . . 13  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( U. y  C_  z  <->  y  C_  suc  z ) )
3634, 35bitr3d 246 . . . . . . . . . . . 12  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( -.  E. w  e.  y  z  e.  w  <->  y  C_  suc  z ) )
3721, 22, 36syl2an 463 . . . . . . . . . . 11  |-  ( ( y  C_  om  /\  z  e.  om )  ->  ( -.  E. w  e.  y  z  e.  w  <->  y  C_  suc  z ) )
38 peano2b 4672 . . . . . . . . . . . . . 14  |-  ( z  e.  om  <->  suc  z  e. 
om )
39 ssnnfi 7082 . . . . . . . . . . . . . 14  |-  ( ( suc  z  e.  om  /\  y  C_  suc  z )  ->  y  e.  Fin )
4038, 39sylanb 458 . . . . . . . . . . . . 13  |-  ( ( z  e.  om  /\  y  C_  suc  z )  ->  y  e.  Fin )
4140ex 423 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  (
y  C_  suc  z  -> 
y  e.  Fin )
)
4241adantl 452 . . . . . . . . . . 11  |-  ( ( y  C_  om  /\  z  e.  om )  ->  (
y  C_  suc  z  -> 
y  e.  Fin )
)
4337, 42sylbid 206 . . . . . . . . . 10  |-  ( ( y  C_  om  /\  z  e.  om )  ->  ( -.  E. w  e.  y  z  e.  w  -> 
y  e.  Fin )
)
4443rexlimdva 2667 . . . . . . . . 9  |-  ( y 
C_  om  ->  ( E. z  e.  om  -.  E. w  e.  y  z  e.  w  ->  y  e.  Fin ) )
4518, 44syl5bir 209 . . . . . . . 8  |-  ( y 
C_  om  ->  ( -. 
A. z  e.  om  E. w  e.  y  z  e.  w  ->  y  e.  Fin ) )
4645ad2antll 709 . . . . . . 7  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
( -.  A. z  e.  om  E. w  e.  y  z  e.  w  ->  y  e.  Fin )
)
4717, 46mpd 14 . . . . . 6  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
y  e.  Fin )
48 simprl 732 . . . . . 6  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  A  ~~  y )
49 enfii 7080 . . . . . 6  |-  ( ( y  e.  Fin  /\  A  ~~  y )  ->  A  e.  Fin )
5047, 48, 49syl2anc 642 . . . . 5  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  A  e.  Fin )
5150ex 423 . . . 4  |-  ( A 
~<  om  ->  ( ( A  ~~  y  /\  y  C_ 
om )  ->  A  e.  Fin ) )
5251exlimdv 1664 . . 3  |-  ( A 
~<  om  ->  ( E. y ( A  ~~  y  /\  y  C_  om )  ->  A  e.  Fin )
)
535, 52sylcom 25 . 2  |-  ( om  e.  _V  ->  ( A  ~<  om  ->  A  e. 
Fin ) )
542, 53mpcom 32 1  |-  ( A 
~<  om  ->  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   U.cuni 3827   class class class wbr 4023   Ord word 4391   Oncon0 4392   suc csuc 4394   omcom 4656    ~~ cen 6860    ~<_ cdom 6861    ~< csdm 6862   Fincfn 6863
This theorem is referenced by:  isfiniteg  7117  unfi2  7126  unifi2  7146  axcclem  8083  dirith2  20677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867
  Copyright terms: Public domain W3C validator