MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isflf Unicode version

Theorem isflf 17688
Description: The property of being a limit point of a function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
isflf  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) ) )
Distinct variable groups:    A, o    o, s, F    o, J, s    o, L, s    o, X, s    o, Y, s
Allowed substitution hint:    A( s)

Proof of Theorem isflf
StepHypRef Expression
1 flfval 17685 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
21eleq2d 2350 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  A  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) ) ) )
3 simp1 955 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  J  e.  (TopOn `  X )
)
4 toponmax 16666 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
543ad2ant1 976 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  X  e.  J )
6 filfbas 17543 . . . . 5  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  ( fBas `  Y )
)
763ad2ant2 977 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  L  e.  ( fBas `  Y
) )
8 simp3 957 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  F : Y --> X )
9 fmfil 17639 . . . 4  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  L )  e.  ( Fil `  X
) )
105, 7, 8, 9syl3anc 1182 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )
11 flimopn 17670 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) ) ) ) )
123, 10, 11syl2anc 642 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) ) ) ) )
13 elfm 17642 . . . . . . . 8  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( o  e.  ( ( X  FilMap  F ) `
 L )  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
145, 7, 8, 13syl3anc 1182 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
o  e.  ( ( X  FilMap  F ) `  L )  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
1514adantr 451 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
o  e.  ( ( X  FilMap  F ) `  L )  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
16 toponss 16667 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  o  e.  J )  ->  o  C_  X )
173, 16sylan 457 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  o  C_  X )
1817biantrurd 494 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( E. s  e.  L  ( F " s ) 
C_  o  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
1915, 18bitr4d 247 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
o  e.  ( ( X  FilMap  F ) `  L )  <->  E. s  e.  L  ( F " s )  C_  o
) )
2019imbi2d 307 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `
 L ) )  <-> 
( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o ) ) )
2120ralbidva 2559 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) )  <->  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) )
2221anbi2d 684 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) ) )  <-> 
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o ) ) ) )
232, 12, 223bitrd 270 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858  TopOnctopon 16632   fBascfbas 17518   Filcfil 17540    FilMap cfm 17628    fLim cflim 17629    fLimf cflf 17630
This theorem is referenced by:  flfelbas  17689  flffbas  17690  flftg  17691  cnpflfi  17694  cnpflf2  17695  txflf  17701  limcflf  19231  limfn  25565  cmptdst  25568
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-top 16636  df-topon 16639  df-ntr 16757  df-nei 16835  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635
  Copyright terms: Public domain W3C validator