MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfth Structured version   Unicode version

Theorem isfth 14103
Description: Value of the set of faithful functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypothesis
Ref Expression
isfth.b  |-  B  =  ( Base `  C
)
Assertion
Ref Expression
isfth  |-  ( F ( C Faith  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
Distinct variable groups:    x, y, B    x, C, y    x, D, y    x, F, y   
x, G, y

Proof of Theorem isfth
Dummy variables  c 
d  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fthfunc 14096 . . 3  |-  ( C Faith 
D )  C_  ( C  Func  D )
21ssbri 4246 . 2  |-  ( F ( C Faith  D ) G  ->  F ( C  Func  D ) G )
3 df-br 4205 . . . . . . 7  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
4 funcrcl 14052 . . . . . . 7  |-  ( <. F ,  G >.  e.  ( C  Func  D
)  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
53, 4sylbi 188 . . . . . 6  |-  ( F ( C  Func  D
) G  ->  ( C  e.  Cat  /\  D  e.  Cat ) )
6 oveq12 6082 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( c  Func  d
)  =  ( C 
Func  D ) )
76breqd 4215 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( f ( c 
Func  d ) g  <-> 
f ( C  Func  D ) g ) )
8 simpl 444 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D )  ->  c  =  C )
98fveq2d 5724 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  ( Base `  C ) )
10 isfth.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
119, 10syl6eqr 2485 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  B )
1211raleqdv 2902 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. y  e.  ( Base `  c
) Fun  `' (
x g y )  <->  A. y  e.  B  Fun  `' ( x g y ) ) )
1311, 12raleqbidv 2908 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y )  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) )
147, 13anbi12d 692 . . . . . . . 8  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) )  <->  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) ) )
1514opabbidv 4263 . . . . . . 7  |-  ( ( c  =  C  /\  d  =  D )  ->  { <. f ,  g
>.  |  ( f
( c  Func  d
) g  /\  A. x  e.  ( Base `  c ) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) ) }  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
16 df-fth 14094 . . . . . . 7  |- Faith  =  ( c  e.  Cat , 
d  e.  Cat  |->  {
<. f ,  g >.  |  ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) ) } )
17 ovex 6098 . . . . . . . 8  |-  ( C 
Func  D )  e.  _V
18 simpl 444 . . . . . . . . . 10  |-  ( ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) )  ->  f
( C  Func  D
) g )
1918ssopab2i 4474 . . . . . . . . 9  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  C_  {
<. f ,  g >.  |  f ( C 
Func  D ) g }
20 opabss 4261 . . . . . . . . 9  |-  { <. f ,  g >.  |  f ( C  Func  D
) g }  C_  ( C  Func  D )
2119, 20sstri 3349 . . . . . . . 8  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  C_  ( C  Func  D )
2217, 21ssexi 4340 . . . . . . 7  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  e.  _V
2315, 16, 22ovmpt2a 6196 . . . . . 6  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Faith  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
245, 23syl 16 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( C Faith  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
2524breqd 4215 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  F { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G ) )
26 relfunc 14051 . . . . . 6  |-  Rel  ( C  Func  D )
27 brrelex12 4907 . . . . . 6  |-  ( ( Rel  ( C  Func  D )  /\  F ( C  Func  D ) G )  ->  ( F  e.  _V  /\  G  e.  _V ) )
2826, 27mpan 652 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( F  e.  _V  /\  G  e.  _V ) )
29 breq12 4209 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( C 
Func  D ) g  <->  F ( C  Func  D ) G ) )
30 simpr 448 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
3130oveqd 6090 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x g y )  =  ( x G y ) )
3231cnveqd 5040 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  `' ( x g y )  =  `' ( x G y ) )
3332funeqd 5467 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( Fun  `' ( x g y )  <->  Fun  `' ( x G y ) ) )
34332ralbidv 2739 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  B  A. y  e.  B  Fun  `' ( x g y )  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
3529, 34anbi12d 692 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) )  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
36 eqid 2435 . . . . . 6  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  =  { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }
3735, 36brabga 4461 . . . . 5  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
3828, 37syl 16 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
3925, 38bitrd 245 . . 3  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
4039bianabs 851 . 2  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
412, 40biadan2 624 1  |-  ( F ( C Faith  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948   <.cop 3809   class class class wbr 4204   {copab 4257   `'ccnv 4869   Rel wrel 4875   Fun wfun 5440   ` cfv 5446  (class class class)co 6073   Basecbs 13461   Catccat 13881    Func cfunc 14043   Faith cfth 14092
This theorem is referenced by:  isfth2  14104  fthpropd  14110  fthoppc  14112  fthres2b  14119  fthres2c  14120  fthres2  14121
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-func 14047  df-fth 14094
  Copyright terms: Public domain W3C validator