MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfull Unicode version

Theorem isfull 14066
Description: Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b  |-  B  =  ( Base `  C
)
isfull.j  |-  J  =  (  Hom  `  D
)
Assertion
Ref Expression
isfull  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
Distinct variable groups:    x, y, B    x, C, y    x, D, y    x, J, y   
x, F, y    x, G, y

Proof of Theorem isfull
Dummy variables  c 
d  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullfunc 14062 . . 3  |-  ( C Full 
D )  C_  ( C  Func  D )
21ssbri 4218 . 2  |-  ( F ( C Full  D ) G  ->  F ( C  Func  D ) G )
3 df-br 4177 . . . . . . 7  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
4 funcrcl 14019 . . . . . . 7  |-  ( <. F ,  G >.  e.  ( C  Func  D
)  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
53, 4sylbi 188 . . . . . 6  |-  ( F ( C  Func  D
) G  ->  ( C  e.  Cat  /\  D  e.  Cat ) )
6 oveq12 6053 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( c  Func  d
)  =  ( C 
Func  D ) )
76breqd 4187 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( f ( c 
Func  d ) g  <-> 
f ( C  Func  D ) g ) )
8 simpl 444 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D )  ->  c  =  C )
98fveq2d 5695 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  ( Base `  C ) )
10 isfull.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
119, 10syl6eqr 2458 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  B )
12 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( c  =  C  /\  d  =  D )  ->  d  =  D )
1312fveq2d 5695 . . . . . . . . . . . . . 14  |-  ( ( c  =  C  /\  d  =  D )  ->  (  Hom  `  d
)  =  (  Hom  `  D ) )
14 isfull.j . . . . . . . . . . . . . 14  |-  J  =  (  Hom  `  D
)
1513, 14syl6eqr 2458 . . . . . . . . . . . . 13  |-  ( ( c  =  C  /\  d  =  D )  ->  (  Hom  `  d
)  =  J )
1615oveqd 6061 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( f `  x ) (  Hom  `  d ) ( f `
 y ) )  =  ( ( f `
 x ) J ( f `  y
) ) )
1716eqeq2d 2419 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ran  ( x g y )  =  ( ( f `  x ) (  Hom  `  d ) ( f `
 y ) )  <->  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) )
1811, 17raleqbidv 2880 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  d ) ( f `
 y ) )  <->  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) )
1911, 18raleqbidv 2880 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  d ) ( f `
 y ) )  <->  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) )
207, 19anbi12d 692 . . . . . . . 8  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  d ) ( f `
 y ) ) )  <->  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) ) )
2120opabbidv 4235 . . . . . . 7  |-  ( ( c  =  C  /\  d  =  D )  ->  { <. f ,  g
>.  |  ( f
( c  Func  d
) g  /\  A. x  e.  ( Base `  c ) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  d ) ( f `
 y ) ) ) }  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } )
22 df-full 14060 . . . . . . 7  |- Full  =  ( c  e.  Cat , 
d  e.  Cat  |->  {
<. f ,  g >.  |  ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  d ) ( f `
 y ) ) ) } )
23 ovex 6069 . . . . . . . 8  |-  ( C 
Func  D )  e.  _V
24 simpl 444 . . . . . . . . . 10  |-  ( ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) )  ->  f ( C 
Func  D ) g )
2524ssopab2i 4446 . . . . . . . . 9  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  C_  { <. f ,  g >.  |  f ( C  Func  D
) g }
26 opabss 4233 . . . . . . . . 9  |-  { <. f ,  g >.  |  f ( C  Func  D
) g }  C_  ( C  Func  D )
2725, 26sstri 3321 . . . . . . . 8  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  C_  ( C  Func  D )
2823, 27ssexi 4312 . . . . . . 7  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  e.  _V
2921, 22, 28ovmpt2a 6167 . . . . . 6  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Full  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } )
305, 29syl 16 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( C Full  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } )
3130breqd 4187 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F ( C Full  D
) G  <->  F { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } G
) )
32 relfunc 14018 . . . . . 6  |-  Rel  ( C  Func  D )
33 brrelex12 4878 . . . . . 6  |-  ( ( Rel  ( C  Func  D )  /\  F ( C  Func  D ) G )  ->  ( F  e.  _V  /\  G  e.  _V ) )
3432, 33mpan 652 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( F  e.  _V  /\  G  e.  _V ) )
35 breq12 4181 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( C 
Func  D ) g  <->  F ( C  Func  D ) G ) )
36 simpr 448 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
3736oveqd 6061 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x g y )  =  ( x G y ) )
3837rneqd 5060 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ran  ( x g y )  =  ran  ( x G y ) )
39 simpl 444 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  f  =  F )
4039fveq1d 5693 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  x
)  =  ( F `
 x ) )
4139fveq1d 5693 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  y
)  =  ( F `
 y ) )
4240, 41oveq12d 6062 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) J ( f `  y ) )  =  ( ( F `  x ) J ( F `  y ) ) )
4338, 42eqeq12d 2422 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) )  <->  ran  ( x G y )  =  ( ( F `  x
) J ( F `
 y ) ) ) )
44432ralbidv 2712 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
4535, 44anbi12d 692 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) )  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
46 eqid 2408 . . . . . 6  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  =  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }
4745, 46brabga 4433 . . . . 5  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
4834, 47syl 16 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
4931, 48bitrd 245 . . 3  |-  ( F ( C  Func  D
) G  ->  ( F ( C Full  D
) G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
5049bianabs 851 . 2  |-  ( F ( C  Func  D
) G  ->  ( F ( C Full  D
) G  <->  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
512, 50biadan2 624 1  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2670   _Vcvv 2920   <.cop 3781   class class class wbr 4176   {copab 4229   ran crn 4842   Rel wrel 4846   ` cfv 5417  (class class class)co 6044   Basecbs 13428    Hom chom 13499   Catccat 13848    Func cfunc 14010   Full cful 14058
This theorem is referenced by:  isfull2  14067  fullpropd  14076  fulloppc  14078  fullres2c  14095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-func 14014  df-full 14060
  Copyright terms: Public domain W3C validator