MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isghmd Unicode version

Theorem isghmd 14708
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
isghmd.x  |-  X  =  ( Base `  S
)
isghmd.y  |-  Y  =  ( Base `  T
)
isghmd.a  |-  .+  =  ( +g  `  S )
isghmd.b  |-  .+^  =  ( +g  `  T )
isghmd.s  |-  ( ph  ->  S  e.  Grp )
isghmd.t  |-  ( ph  ->  T  e.  Grp )
isghmd.f  |-  ( ph  ->  F : X --> Y )
isghmd.l  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )
Assertion
Ref Expression
isghmd  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
Distinct variable groups:    ph, x, y   
x, F, y    x, S, y    x, T, y   
x,  .+ , y    x,  .+^ , y    x, X, y    x, Y, y

Proof of Theorem isghmd
StepHypRef Expression
1 isghmd.s . . 3  |-  ( ph  ->  S  e.  Grp )
2 isghmd.t . . 3  |-  ( ph  ->  T  e.  Grp )
31, 2jca 518 . 2  |-  ( ph  ->  ( S  e.  Grp  /\  T  e.  Grp )
)
4 isghmd.f . . 3  |-  ( ph  ->  F : X --> Y )
5 isghmd.l . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )
65ralrimivva 2648 . . 3  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) ) )
74, 6jca 518 . 2  |-  ( ph  ->  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  X  ( F `  ( x  .+  y ) )  =  ( ( F `  x ) 
.+^  ( F `  y ) ) ) )
8 isghmd.x . . 3  |-  X  =  ( Base `  S
)
9 isghmd.y . . 3  |-  Y  =  ( Base `  T
)
10 isghmd.a . . 3  |-  .+  =  ( +g  `  S )
11 isghmd.b . . 3  |-  .+^  =  ( +g  `  T )
128, 9, 10, 11isghm 14699 . 2  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  X  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) ) ) ) )
133, 7, 12sylanbrc 645 1  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   -->wf 5267   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   Grpcgrp 14378    GrpHom cghm 14696
This theorem is referenced by:  ghmmhmb  14710  resghm  14715  conjghm  14729  divsghm  14735  galactghm  14799  invoppggim  14849  pj1ghm  15028  frgpup1  15100  mulgghm  15144  invghm  15146  ghmplusg  15154  rnglghm  15404  rngrghm  15405  isrhmd  15523  lmodvsghm  15702  asclghm  16094  cygznlem3  16539  evlslem1  19415  reefgim  19842  pwssplit2  27292  frlmup1  27353  imasgim  27367  psgnghm  27540
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-ghm 14697
  Copyright terms: Public domain W3C validator