MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgim Unicode version

Theorem isgim 14775
Description: An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
isgim.b  |-  B  =  ( Base `  R
)
isgim.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
isgim  |-  ( F  e.  ( R GrpIso  S
)  <->  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C
) )

Proof of Theorem isgim
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 936 . 2  |-  ( ( R  e.  Grp  /\  S  e.  Grp  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C }
)  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C }
) )
2 df-gim 14772 . . 3  |- GrpIso  =  ( a  e.  Grp , 
b  e.  Grp  |->  { c  e.  ( a 
GrpHom  b )  |  c : ( Base `  a
)
-1-1-onto-> ( Base `  b ) } )
3 ovex 5925 . . . 4  |-  ( a 
GrpHom  b )  e.  _V
43rabex 4202 . . 3  |-  { c  e.  ( a  GrpHom  b )  |  c : ( Base `  a
)
-1-1-onto-> ( Base `  b ) }  e.  _V
5 oveq12 5909 . . . 4  |-  ( ( a  =  R  /\  b  =  S )  ->  ( a  GrpHom  b )  =  ( R  GrpHom  S ) )
6 fveq2 5563 . . . . . 6  |-  ( a  =  R  ->  ( Base `  a )  =  ( Base `  R
) )
7 isgim.b . . . . . 6  |-  B  =  ( Base `  R
)
86, 7syl6eqr 2366 . . . . 5  |-  ( a  =  R  ->  ( Base `  a )  =  B )
9 fveq2 5563 . . . . . 6  |-  ( b  =  S  ->  ( Base `  b )  =  ( Base `  S
) )
10 isgim.c . . . . . 6  |-  C  =  ( Base `  S
)
119, 10syl6eqr 2366 . . . . 5  |-  ( b  =  S  ->  ( Base `  b )  =  C )
12 f1oeq23 5504 . . . . 5  |-  ( ( ( Base `  a
)  =  B  /\  ( Base `  b )  =  C )  ->  (
c : ( Base `  a ) -1-1-onto-> ( Base `  b
)  <->  c : B -1-1-onto-> C
) )
138, 11, 12syl2an 463 . . . 4  |-  ( ( a  =  R  /\  b  =  S )  ->  ( c : (
Base `  a ) -1-1-onto-> ( Base `  b )  <->  c : B
-1-1-onto-> C ) )
145, 13rabeqbidv 2817 . . 3  |-  ( ( a  =  R  /\  b  =  S )  ->  { c  e.  ( a  GrpHom  b )  |  c : ( Base `  a ) -1-1-onto-> ( Base `  b
) }  =  {
c  e.  ( R 
GrpHom  S )  |  c : B -1-1-onto-> C } )
152, 4, 14elovmpt2 6106 . 2  |-  ( F  e.  ( R GrpIso  S
)  <->  ( R  e. 
Grp  /\  S  e.  Grp  /\  F  e.  {
c  e.  ( R 
GrpHom  S )  |  c : B -1-1-onto-> C } ) )
16 ghmgrp1 14734 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  R  e.  Grp )
17 ghmgrp2 14735 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  S  e.  Grp )
1816, 17jca 518 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  ( R  e.  Grp  /\  S  e. 
Grp ) )
1918adantr 451 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : B -1-1-onto-> C )  ->  ( R  e.  Grp  /\  S  e.  Grp ) )
2019pm4.71ri 614 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : B -1-1-onto-> C )  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C ) ) )
21 f1oeq1 5501 . . . . 5  |-  ( c  =  F  ->  (
c : B -1-1-onto-> C  <->  F : B
-1-1-onto-> C ) )
2221elrab 2957 . . . 4  |-  ( F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C } 
<->  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C ) )
2322anbi2i 675 . . 3  |-  ( ( ( R  e.  Grp  /\  S  e.  Grp )  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C } )  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C ) ) )
2420, 23bitr4i 243 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : B -1-1-onto-> C )  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C }
) )
251, 15, 243bitr4i 268 1  |-  ( F  e.  ( R GrpIso  S
)  <->  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   {crab 2581   -1-1-onto->wf1o 5291   ` cfv 5292  (class class class)co 5900   Basecbs 13195   Grpcgrp 14411    GrpHom cghm 14729   GrpIso cgim 14770
This theorem is referenced by:  gimf1o  14776  gimghm  14777  isgim2  14778  invoppggim  14882  lmimgim  15867  zzngim  16562  cygznlem3  16579  reefgim  19879  imasgim  26412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-ghm 14730  df-gim 14772
  Copyright terms: Public domain W3C validator