MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgim Structured version   Unicode version

Theorem isgim 15050
Description: An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
isgim.b  |-  B  =  ( Base `  R
)
isgim.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
isgim  |-  ( F  e.  ( R GrpIso  S
)  <->  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C
) )

Proof of Theorem isgim
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 939 . 2  |-  ( ( R  e.  Grp  /\  S  e.  Grp  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C }
)  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C }
) )
2 df-gim 15047 . . 3  |- GrpIso  =  ( a  e.  Grp , 
b  e.  Grp  |->  { c  e.  ( a 
GrpHom  b )  |  c : ( Base `  a
)
-1-1-onto-> ( Base `  b ) } )
3 ovex 6107 . . . 4  |-  ( a 
GrpHom  b )  e.  _V
43rabex 4355 . . 3  |-  { c  e.  ( a  GrpHom  b )  |  c : ( Base `  a
)
-1-1-onto-> ( Base `  b ) }  e.  _V
5 oveq12 6091 . . . 4  |-  ( ( a  =  R  /\  b  =  S )  ->  ( a  GrpHom  b )  =  ( R  GrpHom  S ) )
6 fveq2 5729 . . . . . 6  |-  ( a  =  R  ->  ( Base `  a )  =  ( Base `  R
) )
7 isgim.b . . . . . 6  |-  B  =  ( Base `  R
)
86, 7syl6eqr 2487 . . . . 5  |-  ( a  =  R  ->  ( Base `  a )  =  B )
9 fveq2 5729 . . . . . 6  |-  ( b  =  S  ->  ( Base `  b )  =  ( Base `  S
) )
10 isgim.c . . . . . 6  |-  C  =  ( Base `  S
)
119, 10syl6eqr 2487 . . . . 5  |-  ( b  =  S  ->  ( Base `  b )  =  C )
12 f1oeq23 5669 . . . . 5  |-  ( ( ( Base `  a
)  =  B  /\  ( Base `  b )  =  C )  ->  (
c : ( Base `  a ) -1-1-onto-> ( Base `  b
)  <->  c : B -1-1-onto-> C
) )
138, 11, 12syl2an 465 . . . 4  |-  ( ( a  =  R  /\  b  =  S )  ->  ( c : (
Base `  a ) -1-1-onto-> ( Base `  b )  <->  c : B
-1-1-onto-> C ) )
145, 13rabeqbidv 2952 . . 3  |-  ( ( a  =  R  /\  b  =  S )  ->  { c  e.  ( a  GrpHom  b )  |  c : ( Base `  a ) -1-1-onto-> ( Base `  b
) }  =  {
c  e.  ( R 
GrpHom  S )  |  c : B -1-1-onto-> C } )
152, 4, 14elovmpt2 6292 . 2  |-  ( F  e.  ( R GrpIso  S
)  <->  ( R  e. 
Grp  /\  S  e.  Grp  /\  F  e.  {
c  e.  ( R 
GrpHom  S )  |  c : B -1-1-onto-> C } ) )
16 ghmgrp1 15009 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  R  e.  Grp )
17 ghmgrp2 15010 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  S  e.  Grp )
1816, 17jca 520 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  ( R  e.  Grp  /\  S  e. 
Grp ) )
1918adantr 453 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : B -1-1-onto-> C )  ->  ( R  e.  Grp  /\  S  e.  Grp ) )
2019pm4.71ri 616 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : B -1-1-onto-> C )  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C ) ) )
21 f1oeq1 5666 . . . . 5  |-  ( c  =  F  ->  (
c : B -1-1-onto-> C  <->  F : B
-1-1-onto-> C ) )
2221elrab 3093 . . . 4  |-  ( F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C } 
<->  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C ) )
2322anbi2i 677 . . 3  |-  ( ( ( R  e.  Grp  /\  S  e.  Grp )  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C } )  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C ) ) )
2420, 23bitr4i 245 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : B -1-1-onto-> C )  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C }
) )
251, 15, 243bitr4i 270 1  |-  ( F  e.  ( R GrpIso  S
)  <->  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   {crab 2710   -1-1-onto->wf1o 5454   ` cfv 5455  (class class class)co 6082   Basecbs 13470   Grpcgrp 14686    GrpHom cghm 15004   GrpIso cgim 15045
This theorem is referenced by:  gimf1o  15051  gimghm  15052  isgim2  15053  invoppggim  15157  lmimgim  16138  zzngim  16834  cygznlem3  16851  reefgim  20367  imasgim  27242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-ghm 15005  df-gim 15047
  Copyright terms: Public domain W3C validator