Mathbox for Frédéric Liné < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgraphmrph2 Unicode version

Theorem isgraphmrph2 26027
 Description: The graph of a morphism in the category Set. (Contributed by FL, 6-Nov-2013.)
Hypotheses
Ref Expression
isgraphmrph2.1 .graph
isgraphmrph2.2 .Morphism
Assertion
Ref Expression
isgraphmrph2 .Morphism .graph

Proof of Theorem isgraphmrph2
StepHypRef Expression
1 isgraphmrph2.1 . 2 .graph
2 isgraphmrph2.2 . . . 4 .Morphism
3 eleq2 2357 . . . . . 6 .Morphism .Morphism
43anbi2d 684 . . . . 5 .Morphism .Morphism
5 isgraphmrph 26026 . . . . 5
64, 5syl6bi 219 . . . 4 .Morphism .Morphism
72, 6ax-mp 8 . . 3 .Morphism
8 fveq1 5540 . . . 4 .graph .graph
98eqeq1d 2304 . . 3 .graph .graph
107, 9syl5ibr 212 . 2 .graph .Morphism .graph
111, 10ax-mp 8 1 .Morphism .graph
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   wceq 1632   wcel 1696  cfv 5271  c2nd 6137  cgru 8428  ccmrcase 26013  cgraphcase 26024 This theorem is referenced by:  grphidmor3  26057  cmp2morpcatt  26065  cmp2morpgrp  26066  morexcmp2  26071 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-graphcatset 26025
 Copyright terms: Public domain W3C validator