MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrp Unicode version

Theorem isgrp 14509
Description: The predicate "is a group." (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrp.b  |-  B  =  ( Base `  G
)
isgrp.p  |-  .+  =  ( +g  `  G )
isgrp.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
isgrp  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
Distinct variable groups:    m, a, B    G, a, m
Allowed substitution hints:    .+ ( m, a)    .0. ( m, a)

Proof of Theorem isgrp
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
2 isgrp.b . . . 4  |-  B  =  ( Base `  G
)
31, 2syl6eqr 2346 . . 3  |-  ( g  =  G  ->  ( Base `  g )  =  B )
4 fveq2 5541 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
5 isgrp.p . . . . . . 7  |-  .+  =  ( +g  `  G )
64, 5syl6eqr 2346 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
76oveqd 5891 . . . . 5  |-  ( g  =  G  ->  (
m ( +g  `  g
) a )  =  ( m  .+  a
) )
8 fveq2 5541 . . . . . 6  |-  ( g  =  G  ->  ( 0g `  g )  =  ( 0g `  G
) )
9 isgrp.z . . . . . 6  |-  .0.  =  ( 0g `  G )
108, 9syl6eqr 2346 . . . . 5  |-  ( g  =  G  ->  ( 0g `  g )  =  .0.  )
117, 10eqeq12d 2310 . . . 4  |-  ( g  =  G  ->  (
( m ( +g  `  g ) a )  =  ( 0g `  g )  <->  ( m  .+  a )  =  .0.  ) )
123, 11rexeqbidv 2762 . . 3  |-  ( g  =  G  ->  ( E. m  e.  ( Base `  g ) ( m ( +g  `  g
) a )  =  ( 0g `  g
)  <->  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
133, 12raleqbidv 2761 . 2  |-  ( g  =  G  ->  ( A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g ) ( m ( +g  `  g
) a )  =  ( 0g `  g
)  <->  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
14 df-grp 14505 . 2  |-  Grp  =  { g  e.  Mnd  | 
A. a  e.  (
Base `  g ) E. m  e.  ( Base `  g ) ( m ( +g  `  g
) a )  =  ( 0g `  g
) }
1513, 14elrab2 2938 1  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   0gc0g 13416   Mndcmnd 14377   Grpcgrp 14378
This theorem is referenced by:  grpmnd  14510  grpinvex  14513  grppropd  14516  isgrpd2e  14520
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-grp 14505
  Copyright terms: Public domain W3C validator