MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpd Unicode version

Theorem isgrpd 14759
Description: Deduce a group from its properties. Unlike isgrpd2 14757, this one goes straight from the base properties rather than going through  Mnd.  N (negative) is normally dependent on  x i.e. read it as  N ( x ). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isgrpd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
isgrpd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
isgrpd.z  |-  ( ph  ->  .0.  e.  B )
isgrpd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
isgrpd.n  |-  ( (
ph  /\  x  e.  B )  ->  N  e.  B )
isgrpd.j  |-  ( (
ph  /\  x  e.  B )  ->  ( N  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpd  |-  ( ph  ->  G  e.  Grp )
Distinct variable groups:    x, y,
z,  .+    x,  .0. , y,
z    x, B, y, z   
y, N    ph, x, y, z    x, G, y, z
Allowed substitution hints:    N( x, z)

Proof of Theorem isgrpd
StepHypRef Expression
1 isgrpd.b . 2  |-  ( ph  ->  B  =  ( Base `  G ) )
2 isgrpd.p . 2  |-  ( ph  ->  .+  =  ( +g  `  G ) )
3 isgrpd.c . 2  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
4 isgrpd.a . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
5 isgrpd.z . 2  |-  ( ph  ->  .0.  e.  B )
6 isgrpd.i . 2  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
7 isgrpd.n . . 3  |-  ( (
ph  /\  x  e.  B )  ->  N  e.  B )
8 isgrpd.j . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( N  .+  x )  =  .0.  )
9 oveq1 6029 . . . . 5  |-  ( y  =  N  ->  (
y  .+  x )  =  ( N  .+  x ) )
109eqeq1d 2397 . . . 4  |-  ( y  =  N  ->  (
( y  .+  x
)  =  .0.  <->  ( N  .+  x )  =  .0.  ) )
1110rspcev 2997 . . 3  |-  ( ( N  e.  B  /\  ( N  .+  x )  =  .0.  )  ->  E. y  e.  B  ( y  .+  x
)  =  .0.  )
127, 8, 11syl2anc 643 . 2  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
131, 2, 3, 4, 5, 6, 12isgrpde 14758 1  |-  ( ph  ->  G  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2652   ` cfv 5396  (class class class)co 6022   Basecbs 13398   +g cplusg 13458   Grpcgrp 14614
This theorem is referenced by:  isgrpi  14760  issubg2  14888  symggrp  15032  isdrngd  15789  psrgrp  16391  dchrabl  20907  mendrng  27171  ldualgrplem  29262  tgrpgrplem  30865  erngdvlem1  31104  erngdvlem1-rN  31112  dvhgrp  31224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-iota 5360  df-fun 5398  df-fv 5404  df-ov 6025  df-riota 6487  df-0g 13656  df-mnd 14619  df-grp 14741
  Copyright terms: Public domain W3C validator