MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpd Unicode version

Theorem isgrpd 14507
Description: Deduce a group from its properties. Unlike isgrpd2 14505, this one goes straight from the base properties rather than going through  Mnd.  N (negative) is normally dependent on  x i.e. read it as  N ( x ). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isgrpd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
isgrpd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
isgrpd.z  |-  ( ph  ->  .0.  e.  B )
isgrpd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
isgrpd.n  |-  ( (
ph  /\  x  e.  B )  ->  N  e.  B )
isgrpd.j  |-  ( (
ph  /\  x  e.  B )  ->  ( N  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpd  |-  ( ph  ->  G  e.  Grp )
Distinct variable groups:    x, y,
z,  .+    x,  .0. , y,
z    x, B, y, z   
y, N    ph, x, y, z    x, G, y, z
Allowed substitution hints:    N( x, z)

Proof of Theorem isgrpd
StepHypRef Expression
1 isgrpd.b . 2  |-  ( ph  ->  B  =  ( Base `  G ) )
2 isgrpd.p . 2  |-  ( ph  ->  .+  =  ( +g  `  G ) )
3 isgrpd.c . 2  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
4 isgrpd.a . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
5 isgrpd.z . 2  |-  ( ph  ->  .0.  e.  B )
6 isgrpd.i . 2  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
7 isgrpd.n . . 3  |-  ( (
ph  /\  x  e.  B )  ->  N  e.  B )
8 isgrpd.j . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( N  .+  x )  =  .0.  )
9 oveq1 5865 . . . . 5  |-  ( y  =  N  ->  (
y  .+  x )  =  ( N  .+  x ) )
109eqeq1d 2291 . . . 4  |-  ( y  =  N  ->  (
( y  .+  x
)  =  .0.  <->  ( N  .+  x )  =  .0.  ) )
1110rspcev 2884 . . 3  |-  ( ( N  e.  B  /\  ( N  .+  x )  =  .0.  )  ->  E. y  e.  B  ( y  .+  x
)  =  .0.  )
127, 8, 11syl2anc 642 . 2  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
131, 2, 3, 4, 5, 6, 12isgrpde 14506 1  |-  ( ph  ->  G  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   E.wrex 2544   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   Grpcgrp 14362
This theorem is referenced by:  isgrpi  14508  issubg2  14636  symggrp  14780  isdrngd  15537  psrgrp  16143  dchrabl  20493  mendrng  27500  ldualgrplem  29335  tgrpgrplem  30938  erngdvlem1  31177  erngdvlem1-rN  31185  dvhgrp  31297
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-riota 6304  df-0g 13404  df-mnd 14367  df-grp 14489
  Copyright terms: Public domain W3C validator