Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpd Structured version   Unicode version

Theorem isgrpd 14822
 Description: Deduce a group from its properties. Unlike isgrpd2 14820, this one goes straight from the base properties rather than going through . (negative) is normally dependent on i.e. read it as . (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b
isgrpd.p
isgrpd.c
isgrpd.a
isgrpd.z
isgrpd.i
isgrpd.n
isgrpd.j
Assertion
Ref Expression
isgrpd
Distinct variable groups:   ,,,   , ,,   ,,,   ,   ,,,   ,,,
Allowed substitution hints:   (,)

Proof of Theorem isgrpd
StepHypRef Expression
1 isgrpd.b . 2
2 isgrpd.p . 2
3 isgrpd.c . 2
4 isgrpd.a . 2
5 isgrpd.z . 2
6 isgrpd.i . 2
7 isgrpd.n . . 3
8 isgrpd.j . . 3
9 oveq1 6080 . . . . 5
109eqeq1d 2443 . . . 4
1110rspcev 3044 . . 3
127, 8, 11syl2anc 643 . 2
131, 2, 3, 4, 5, 6, 12isgrpde 14821 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936   wceq 1652   wcel 1725  wrex 2698  cfv 5446  (class class class)co 6073  cbs 13461   cplusg 13521  cgrp 14677 This theorem is referenced by:  isgrpi  14823  issubg2  14951  symggrp  15095  isdrngd  15852  psrgrp  16454  dchrabl  21030  mendrng  27468  ldualgrplem  29880  tgrpgrplem  31483  erngdvlem1  31722  erngdvlem1-rN  31730  dvhgrp  31842 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-riota 6541  df-0g 13719  df-mnd 14682  df-grp 14804
 Copyright terms: Public domain W3C validator