MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpda Unicode version

Theorem isgrpda 20964
Description: Properties that determine a group operation. (Contributed by Jeff Madsen, 1-Dec-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
isgrpda.1  |-  ( ph  ->  X  e.  _V )
isgrpda.2  |-  ( ph  ->  G : ( X  X.  X ) --> X )
isgrpda.3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x G y ) G z )  =  ( x G ( y G z ) ) )
isgrpda.4  |-  ( ph  ->  U  e.  X )
isgrpda.5  |-  ( (
ph  /\  x  e.  X )  ->  ( U G x )  =  x )
isgrpda.6  |-  ( (
ph  /\  x  e.  X )  ->  E. n  e.  X  ( n G x )  =  U )
Assertion
Ref Expression
isgrpda  |-  ( ph  ->  G  e.  GrpOp )
Distinct variable groups:    ph, x, y, z    n, G, x, y, z    n, X, x, y, z    U, n, x, y, z
Allowed substitution hint:    ph( n)

Proof of Theorem isgrpda
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 isgrpda.2 . . 3  |-  ( ph  ->  G : ( X  X.  X ) --> X )
2 isgrpda.3 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x G y ) G z )  =  ( x G ( y G z ) ) )
32ralrimivvva 2636 . . 3  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
4 isgrpda.4 . . . 4  |-  ( ph  ->  U  e.  X )
5 isgrpda.5 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( U G x )  =  x )
6 isgrpda.6 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  E. n  e.  X  ( n G x )  =  U )
7 oveq1 5865 . . . . . . . . 9  |-  ( y  =  n  ->  (
y G x )  =  ( n G x ) )
87eqeq1d 2291 . . . . . . . 8  |-  ( y  =  n  ->  (
( y G x )  =  U  <->  ( n G x )  =  U ) )
98cbvrexv 2765 . . . . . . 7  |-  ( E. y  e.  X  ( y G x )  =  U  <->  E. n  e.  X  ( n G x )  =  U )
106, 9sylibr 203 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  E. y  e.  X  ( y G x )  =  U )
115, 10jca 518 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) )
1211ralrimiva 2626 . . . 4  |-  ( ph  ->  A. x  e.  X  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) )
13 oveq1 5865 . . . . . . . 8  |-  ( u  =  U  ->  (
u G x )  =  ( U G x ) )
1413eqeq1d 2291 . . . . . . 7  |-  ( u  =  U  ->  (
( u G x )  =  x  <->  ( U G x )  =  x ) )
15 eqeq2 2292 . . . . . . . 8  |-  ( u  =  U  ->  (
( y G x )  =  u  <->  ( y G x )  =  U ) )
1615rexbidv 2564 . . . . . . 7  |-  ( u  =  U  ->  ( E. y  e.  X  ( y G x )  =  u  <->  E. y  e.  X  ( y G x )  =  U ) )
1714, 16anbi12d 691 . . . . . 6  |-  ( u  =  U  ->  (
( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u )  <->  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) ) )
1817ralbidv 2563 . . . . 5  |-  ( u  =  U  ->  ( A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u )  <->  A. x  e.  X  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) ) )
1918rspcev 2884 . . . 4  |-  ( ( U  e.  X  /\  A. x  e.  X  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) )  ->  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) )
204, 12, 19syl2anc 642 . . 3  |-  ( ph  ->  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) )
214adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  U  e.  X )
22 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
235eqcomd 2288 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  x  =  ( U G x ) )
24 rspceov 5893 . . . . . . . . . 10  |-  ( ( U  e.  X  /\  x  e.  X  /\  x  =  ( U G x ) )  ->  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) )
2521, 22, 23, 24syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) )
2625ralrimiva 2626 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) )
27 foov 5994 . . . . . . . 8  |-  ( G : ( X  X.  X ) -onto-> X  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) ) )
281, 26, 27sylanbrc 645 . . . . . . 7  |-  ( ph  ->  G : ( X  X.  X ) -onto-> X )
29 forn 5454 . . . . . . 7  |-  ( G : ( X  X.  X ) -onto-> X  ->  ran  G  =  X )
3028, 29syl 15 . . . . . 6  |-  ( ph  ->  ran  G  =  X )
3130, 30xpeq12d 4714 . . . . 5  |-  ( ph  ->  ( ran  G  X.  ran  G )  =  ( X  X.  X ) )
3231, 30feq23d 5386 . . . 4  |-  ( ph  ->  ( G : ( ran  G  X.  ran  G ) --> ran  G  <->  G :
( X  X.  X
) --> X ) )
3330raleqdv 2742 . . . . . 6  |-  ( ph  ->  ( A. z  e. 
ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
3430, 33raleqbidv 2748 . . . . 5  |-  ( ph  ->  ( A. y  e. 
ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
3530, 34raleqbidv 2748 . . . 4  |-  ( ph  ->  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
3630rexeqdv 2743 . . . . . . 7  |-  ( ph  ->  ( E. y  e. 
ran  G ( y G x )  =  u  <->  E. y  e.  X  ( y G x )  =  u ) )
3736anbi2d 684 . . . . . 6  |-  ( ph  ->  ( ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u )  <->  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) )
3830, 37raleqbidv 2748 . . . . 5  |-  ( ph  ->  ( A. x  e. 
ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u )  <->  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) )
3930, 38rexeqbidv 2749 . . . 4  |-  ( ph  ->  ( E. u  e. 
ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u )  <->  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) )
4032, 35, 393anbi123d 1252 . . 3  |-  ( ph  ->  ( ( G :
( ran  G  X.  ran  G ) --> ran  G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e. 
ran  G ( y G x )  =  u ) )  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  (
( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) ) )
411, 3, 20, 40mpbir3and 1135 . 2  |-  ( ph  ->  ( G : ( ran  G  X.  ran  G ) --> ran  G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e. 
ran  G ( y G x )  =  u ) ) )
42 isgrpda.1 . . . . 5  |-  ( ph  ->  X  e.  _V )
43 xpexg 4800 . . . . 5  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
4442, 42, 43syl2anc 642 . . . 4  |-  ( ph  ->  ( X  X.  X
)  e.  _V )
45 fex 5749 . . . 4  |-  ( ( G : ( X  X.  X ) --> X  /\  ( X  X.  X )  e.  _V )  ->  G  e.  _V )
461, 44, 45syl2anc 642 . . 3  |-  ( ph  ->  G  e.  _V )
47 eqid 2283 . . . 4  |-  ran  G  =  ran  G
4847isgrpo 20863 . . 3  |-  ( G  e.  _V  ->  ( G  e.  GrpOp  <->  ( G : ( ran  G  X.  ran  G ) --> ran 
G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u ) ) ) )
4946, 48syl 15 . 2  |-  ( ph  ->  ( G  e.  GrpOp  <->  ( G : ( ran  G  X.  ran  G ) --> ran 
G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u ) ) ) )
5041, 49mpbird 223 1  |-  ( ph  ->  G  e.  GrpOp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    X. cxp 4687   ran crn 4690   -->wf 5251   -onto->wfo 5253  (class class class)co 5858   GrpOpcgr 20853
This theorem is referenced by:  isgrpod  20965  isabloda  20966  isdrngo2  26589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-grpo 20858
  Copyright terms: Public domain W3C validator