MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpde Structured version   Unicode version

Theorem isgrpde 14819
Description: Deduce a group from its properties. In this version of isgrpd 14820, we don't assume there is an expression for the inverse of  x. (Contributed by NM, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isgrpd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
isgrpd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
isgrpd.z  |-  ( ph  ->  .0.  e.  B )
isgrpd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
isgrpde.n  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpde  |-  ( ph  ->  G  e.  Grp )
Distinct variable groups:    x, y,
z,  .+    x,  .0. , y,
z    x, B, y, z    ph, x, y, z    x, G, y, z

Proof of Theorem isgrpde
StepHypRef Expression
1 isgrpd.b . 2  |-  ( ph  ->  B  =  ( Base `  G ) )
2 isgrpd.p . 2  |-  ( ph  ->  .+  =  ( +g  `  G ) )
3 isgrpd.z . . 3  |-  ( ph  ->  .0.  e.  B )
4 isgrpd.i . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
5 isgrpd.c . . . 4  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
6 isgrpd.a . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
7 isgrpde.n . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
85, 3, 4, 6, 7grpridd 6279 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
91, 2, 3, 4, 8grpidd 14708 . 2  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
101, 2, 5, 6, 3, 4, 8ismndd 14709 . 2  |-  ( ph  ->  G  e.  Mnd )
111, 2, 9, 10, 7isgrpd2e 14817 1  |-  ( ph  ->  G  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2698   ` cfv 5446  (class class class)co 6073   Basecbs 13459   +g cplusg 13519   Grpcgrp 14675
This theorem is referenced by:  isgrpd  14820  imasgrp2  14923  unitgrp  15762
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-riota 6541  df-0g 13717  df-mnd 14680  df-grp 14802
  Copyright terms: Public domain W3C validator