MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpde Unicode version

Theorem isgrpde 14522
Description: Deduce a group from its properties. In this version of isgrpd 14523, we don't assume there is an expression for the inverse of  x. (Contributed by NM, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isgrpd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
isgrpd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
isgrpd.z  |-  ( ph  ->  .0.  e.  B )
isgrpd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
isgrpde.n  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpde  |-  ( ph  ->  G  e.  Grp )
Distinct variable groups:    x, y,
z,  .+    x,  .0. , y,
z    x, B, y, z    ph, x, y, z    x, G, y, z

Proof of Theorem isgrpde
StepHypRef Expression
1 isgrpd.b . 2  |-  ( ph  ->  B  =  ( Base `  G ) )
2 isgrpd.p . 2  |-  ( ph  ->  .+  =  ( +g  `  G ) )
3 isgrpd.z . . 3  |-  ( ph  ->  .0.  e.  B )
4 isgrpd.i . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
5 isgrpd.c . . . 4  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
6 isgrpd.a . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
7 isgrpde.n . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
85, 3, 4, 6, 7grpridd 6076 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
91, 2, 3, 4, 8grpidd 14411 . 2  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
101, 2, 5, 6, 3, 4, 8ismndd 14412 . 2  |-  ( ph  ->  G  e.  Mnd )
111, 2, 9, 10, 7isgrpd2e 14520 1  |-  ( ph  ->  G  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   Grpcgrp 14378
This theorem is referenced by:  isgrpd  14523  imasgrp2  14626  unitgrp  15465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-riota 6320  df-0g 13420  df-mnd 14383  df-grp 14505
  Copyright terms: Public domain W3C validator