MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpinv Structured version   Unicode version

Theorem isgrpinv 14855
Description: Properties showing that a function  M is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( inv g `  G )
Assertion
Ref Expression
isgrpinv  |-  ( G  e.  Grp  ->  (
( M : B --> B  /\  A. x  e.  B  ( ( M `
 x )  .+  x )  =  .0.  )  <->  N  =  M
) )
Distinct variable groups:    x, B    x, G    x,  .0.    x,  .+    x, M    x, N

Proof of Theorem isgrpinv
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
2 grpinv.p . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
3 grpinv.u . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
4 grpinv.n . . . . . . . . . 10  |-  N  =  ( inv g `  G )
51, 2, 3, 4grpinvval 14844 . . . . . . . . 9  |-  ( x  e.  B  ->  ( N `  x )  =  ( iota_ e  e.  B ( e  .+  x )  =  .0.  ) )
65ad2antlr 708 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( N `  x )  =  ( iota_ e  e.  B ( e  .+  x )  =  .0.  ) )
7 simpr 448 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  (
( M `  x
)  .+  x )  =  .0.  )
8 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  M : B --> B )
9 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  x  e.  B )
108, 9ffvelrnd 5871 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( M `  x )  e.  B )
11 simplll 735 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  G  e.  Grp )
121, 2, 3grpinveu 14839 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  E! e  e.  B  ( e  .+  x
)  =  .0.  )
1311, 9, 12syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  E! e  e.  B  (
e  .+  x )  =  .0.  )
14 oveq1 6088 . . . . . . . . . . . 12  |-  ( e  =  ( M `  x )  ->  (
e  .+  x )  =  ( ( M `
 x )  .+  x ) )
1514eqeq1d 2444 . . . . . . . . . . 11  |-  ( e  =  ( M `  x )  ->  (
( e  .+  x
)  =  .0.  <->  ( ( M `  x )  .+  x )  =  .0.  ) )
1615riota2 6572 . . . . . . . . . 10  |-  ( ( ( M `  x
)  e.  B  /\  E! e  e.  B  ( e  .+  x
)  =  .0.  )  ->  ( ( ( M `
 x )  .+  x )  =  .0.  <->  (
iota_ e  e.  B
( e  .+  x
)  =  .0.  )  =  ( M `  x ) ) )
1710, 13, 16syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  (
( ( M `  x )  .+  x
)  =  .0.  <->  ( iota_ e  e.  B ( e 
.+  x )  =  .0.  )  =  ( M `  x ) ) )
187, 17mpbid 202 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( iota_ e  e.  B ( e  .+  x )  =  .0.  )  =  ( M `  x
) )
196, 18eqtrd 2468 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( N `  x )  =  ( M `  x ) )
2019ex 424 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  M : B --> B )  /\  x  e.  B
)  ->  ( (
( M `  x
)  .+  x )  =  .0.  ->  ( N `  x )  =  ( M `  x ) ) )
2120ralimdva 2784 . . . . 5  |-  ( ( G  e.  Grp  /\  M : B --> B )  ->  ( A. x  e.  B  ( ( M `  x )  .+  x )  =  .0. 
->  A. x  e.  B  ( N `  x )  =  ( M `  x ) ) )
2221impr 603 . . . 4  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  ->  A. x  e.  B  ( N `  x )  =  ( M `  x ) )
231, 4grpinvfn 14845 . . . . 5  |-  N  Fn  B
24 ffn 5591 . . . . . 6  |-  ( M : B --> B  ->  M  Fn  B )
2524ad2antrl 709 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  ->  M  Fn  B )
26 eqfnfv 5827 . . . . 5  |-  ( ( N  Fn  B  /\  M  Fn  B )  ->  ( N  =  M  <->  A. x  e.  B  ( N `  x )  =  ( M `  x ) ) )
2723, 25, 26sylancr 645 . . . 4  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  -> 
( N  =  M  <->  A. x  e.  B  ( N `  x )  =  ( M `  x ) ) )
2822, 27mpbird 224 . . 3  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  ->  N  =  M )
2928ex 424 . 2  |-  ( G  e.  Grp  ->  (
( M : B --> B  /\  A. x  e.  B  ( ( M `
 x )  .+  x )  =  .0.  )  ->  N  =  M ) )
301, 4grpinvf 14849 . . . 4  |-  ( G  e.  Grp  ->  N : B --> B )
311, 2, 3, 4grplinv 14851 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( N `  x )  .+  x
)  =  .0.  )
3231ralrimiva 2789 . . . 4  |-  ( G  e.  Grp  ->  A. x  e.  B  ( ( N `  x )  .+  x )  =  .0.  )
3330, 32jca 519 . . 3  |-  ( G  e.  Grp  ->  ( N : B --> B  /\  A. x  e.  B  ( ( N `  x
)  .+  x )  =  .0.  ) )
34 feq1 5576 . . . 4  |-  ( N  =  M  ->  ( N : B --> B  <->  M : B
--> B ) )
35 fveq1 5727 . . . . . . 7  |-  ( N  =  M  ->  ( N `  x )  =  ( M `  x ) )
3635oveq1d 6096 . . . . . 6  |-  ( N  =  M  ->  (
( N `  x
)  .+  x )  =  ( ( M `
 x )  .+  x ) )
3736eqeq1d 2444 . . . . 5  |-  ( N  =  M  ->  (
( ( N `  x )  .+  x
)  =  .0.  <->  ( ( M `  x )  .+  x )  =  .0.  ) )
3837ralbidv 2725 . . . 4  |-  ( N  =  M  ->  ( A. x  e.  B  ( ( N `  x )  .+  x
)  =  .0.  <->  A. x  e.  B  ( ( M `  x )  .+  x )  =  .0.  ) )
3934, 38anbi12d 692 . . 3  |-  ( N  =  M  ->  (
( N : B --> B  /\  A. x  e.  B  ( ( N `
 x )  .+  x )  =  .0.  )  <->  ( M : B
--> B  /\  A. x  e.  B  ( ( M `  x )  .+  x )  =  .0.  ) ) )
4033, 39syl5ibcom 212 . 2  |-  ( G  e.  Grp  ->  ( N  =  M  ->  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) ) )
4129, 40impbid 184 1  |-  ( G  e.  Grp  ->  (
( M : B --> B  /\  A. x  e.  B  ( ( M `
 x )  .+  x )  =  .0.  )  <->  N  =  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E!wreu 2707    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   iota_crio 6542   Basecbs 13469   +g cplusg 13529   0gc0g 13723   Grpcgrp 14685   inv gcminusg 14686
This theorem is referenced by:  oppginv  15155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-riota 6549  df-0g 13727  df-mnd 14690  df-grp 14812  df-minusg 14813
  Copyright terms: Public domain W3C validator