MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpo Unicode version

Theorem isgrpo 21633
Description: The predicate "is a group operation." Note that 
X is the base set of the group. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
isgrp.1  |-  X  =  ran  G
Assertion
Ref Expression
isgrpo  |-  ( G  e.  A  ->  ( G  e.  GrpOp  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  (
( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) ) )
Distinct variable groups:    x, u, y, z, G    u, X, x, y, z
Allowed substitution hints:    A( x, y, z, u)

Proof of Theorem isgrpo
Dummy variables  g 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 5517 . . . . . 6  |-  ( g  =  G  ->  (
g : ( t  X.  t ) --> t  <-> 
G : ( t  X.  t ) --> t ) )
2 oveq 6027 . . . . . . . . . 10  |-  ( g  =  G  ->  (
( x g y ) g z )  =  ( ( x g y ) G z ) )
3 oveq 6027 . . . . . . . . . . 11  |-  ( g  =  G  ->  (
x g y )  =  ( x G y ) )
43oveq1d 6036 . . . . . . . . . 10  |-  ( g  =  G  ->  (
( x g y ) G z )  =  ( ( x G y ) G z ) )
52, 4eqtrd 2420 . . . . . . . . 9  |-  ( g  =  G  ->  (
( x g y ) g z )  =  ( ( x G y ) G z ) )
6 oveq 6027 . . . . . . . . . 10  |-  ( g  =  G  ->  (
x g ( y g z ) )  =  ( x G ( y g z ) ) )
7 oveq 6027 . . . . . . . . . . 11  |-  ( g  =  G  ->  (
y g z )  =  ( y G z ) )
87oveq2d 6037 . . . . . . . . . 10  |-  ( g  =  G  ->  (
x G ( y g z ) )  =  ( x G ( y G z ) ) )
96, 8eqtrd 2420 . . . . . . . . 9  |-  ( g  =  G  ->  (
x g ( y g z ) )  =  ( x G ( y G z ) ) )
105, 9eqeq12d 2402 . . . . . . . 8  |-  ( g  =  G  ->  (
( ( x g y ) g z )  =  ( x g ( y g z ) )  <->  ( (
x G y ) G z )  =  ( x G ( y G z ) ) ) )
1110ralbidv 2670 . . . . . . 7  |-  ( g  =  G  ->  ( A. z  e.  t 
( ( x g y ) g z )  =  ( x g ( y g z ) )  <->  A. z  e.  t  ( (
x G y ) G z )  =  ( x G ( y G z ) ) ) )
12112ralbidv 2692 . . . . . 6  |-  ( g  =  G  ->  ( A. x  e.  t  A. y  e.  t  A. z  e.  t 
( ( x g y ) g z )  =  ( x g ( y g z ) )  <->  A. x  e.  t  A. y  e.  t  A. z  e.  t  ( (
x G y ) G z )  =  ( x G ( y G z ) ) ) )
13 oveq 6027 . . . . . . . . 9  |-  ( g  =  G  ->  (
u g x )  =  ( u G x ) )
1413eqeq1d 2396 . . . . . . . 8  |-  ( g  =  G  ->  (
( u g x )  =  x  <->  ( u G x )  =  x ) )
15 oveq 6027 . . . . . . . . . 10  |-  ( g  =  G  ->  (
y g x )  =  ( y G x ) )
1615eqeq1d 2396 . . . . . . . . 9  |-  ( g  =  G  ->  (
( y g x )  =  u  <->  ( y G x )  =  u ) )
1716rexbidv 2671 . . . . . . . 8  |-  ( g  =  G  ->  ( E. y  e.  t 
( y g x )  =  u  <->  E. y  e.  t  ( y G x )  =  u ) )
1814, 17anbi12d 692 . . . . . . 7  |-  ( g  =  G  ->  (
( ( u g x )  =  x  /\  E. y  e.  t  ( y g x )  =  u )  <->  ( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) ) )
1918rexralbidv 2694 . . . . . 6  |-  ( g  =  G  ->  ( E. u  e.  t  A. x  e.  t 
( ( u g x )  =  x  /\  E. y  e.  t  ( y g x )  =  u )  <->  E. u  e.  t 
A. x  e.  t  ( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) ) )
201, 12, 193anbi123d 1254 . . . . 5  |-  ( g  =  G  ->  (
( g : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  ( (
x g y ) g z )  =  ( x g ( y g z ) )  /\  E. u  e.  t  A. x  e.  t  ( (
u g x )  =  x  /\  E. y  e.  t  (
y g x )  =  u ) )  <-> 
( G : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  ( (
u G x )  =  x  /\  E. y  e.  t  (
y G x )  =  u ) ) ) )
2120exbidv 1633 . . . 4  |-  ( g  =  G  ->  ( E. t ( g : ( t  X.  t
) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  (
( x g y ) g z )  =  ( x g ( y g z ) )  /\  E. u  e.  t  A. x  e.  t  (
( u g x )  =  x  /\  E. y  e.  t  ( y g x )  =  u ) )  <->  E. t ( G :
( t  X.  t
) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  (
( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) ) ) )
22 df-grpo 21628 . . . 4  |-  GrpOp  =  {
g  |  E. t
( g : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  ( (
x g y ) g z )  =  ( x g ( y g z ) )  /\  E. u  e.  t  A. x  e.  t  ( (
u g x )  =  x  /\  E. y  e.  t  (
y g x )  =  u ) ) }
2321, 22elab2g 3028 . . 3  |-  ( G  e.  A  ->  ( G  e.  GrpOp  <->  E. t
( G : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  ( (
u G x )  =  x  /\  E. y  e.  t  (
y G x )  =  u ) ) ) )
24 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u )  -> 
( u G x )  =  x )
2524ralimi 2725 . . . . . . . . . . . . 13  |-  ( A. x  e.  t  (
( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u )  ->  A. x  e.  t 
( u G x )  =  x )
26 oveq2 6029 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
u G x )  =  ( u G z ) )
27 id 20 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  x  =  z )
2826, 27eqeq12d 2402 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( u G x )  =  x  <->  ( u G z )  =  z ) )
29 eqcom 2390 . . . . . . . . . . . . . . . 16  |-  ( ( u G z )  =  z  <->  z  =  ( u G z ) )
3028, 29syl6bb 253 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( u G x )  =  x  <->  z  =  ( u G z ) ) )
3130rspcv 2992 . . . . . . . . . . . . . 14  |-  ( z  e.  t  ->  ( A. x  e.  t 
( u G x )  =  x  -> 
z  =  ( u G z ) ) )
32 oveq2 6029 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
u G y )  =  ( u G z ) )
3332eqeq2d 2399 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  (
z  =  ( u G y )  <->  z  =  ( u G z ) ) )
3433rspcev 2996 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  t  /\  z  =  ( u G z ) )  ->  E. y  e.  t  z  =  ( u G y ) )
3534ex 424 . . . . . . . . . . . . . 14  |-  ( z  e.  t  ->  (
z  =  ( u G z )  ->  E. y  e.  t 
z  =  ( u G y ) ) )
3631, 35syld 42 . . . . . . . . . . . . 13  |-  ( z  e.  t  ->  ( A. x  e.  t 
( u G x )  =  x  ->  E. y  e.  t 
z  =  ( u G y ) ) )
3725, 36syl5 30 . . . . . . . . . . . 12  |-  ( z  e.  t  ->  ( A. x  e.  t 
( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u )  ->  E. y  e.  t  z  =  ( u G y ) ) )
3837reximdv 2761 . . . . . . . . . . 11  |-  ( z  e.  t  ->  ( E. u  e.  t  A. x  e.  t 
( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u )  ->  E. u  e.  t  E. y  e.  t  z  =  ( u G y ) ) )
3938impcom 420 . . . . . . . . . 10  |-  ( ( E. u  e.  t 
A. x  e.  t  ( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u )  /\  z  e.  t )  ->  E. u  e.  t  E. y  e.  t  z  =  ( u G y ) )
4039ralrimiva 2733 . . . . . . . . 9  |-  ( E. u  e.  t  A. x  e.  t  (
( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u )  ->  A. z  e.  t  E. u  e.  t  E. y  e.  t 
z  =  ( u G y ) )
4140anim2i 553 . . . . . . . 8  |-  ( ( G : ( t  X.  t ) --> t  /\  E. u  e.  t  A. x  e.  t  ( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) )  -> 
( G : ( t  X.  t ) --> t  /\  A. z  e.  t  E. u  e.  t  E. y  e.  t  z  =  ( u G y ) ) )
42 foov 6160 . . . . . . . 8  |-  ( G : ( t  X.  t ) -onto-> t  <->  ( G : ( t  X.  t ) --> t  /\  A. z  e.  t  E. u  e.  t  E. y  e.  t  z  =  ( u G y ) ) )
4341, 42sylibr 204 . . . . . . 7  |-  ( ( G : ( t  X.  t ) --> t  /\  E. u  e.  t  A. x  e.  t  ( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) )  ->  G : ( t  X.  t ) -onto-> t )
44 forn 5597 . . . . . . . 8  |-  ( G : ( t  X.  t ) -onto-> t  ->  ran  G  =  t )
4544eqcomd 2393 . . . . . . 7  |-  ( G : ( t  X.  t ) -onto-> t  -> 
t  =  ran  G
)
4643, 45syl 16 . . . . . 6  |-  ( ( G : ( t  X.  t ) --> t  /\  E. u  e.  t  A. x  e.  t  ( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) )  -> 
t  =  ran  G
)
47463adant2 976 . . . . 5  |-  ( ( G : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  ( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) )  -> 
t  =  ran  G
)
4847pm4.71ri 615 . . . 4  |-  ( ( G : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  ( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) )  <->  ( t  =  ran  G  /\  ( G : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  (
( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) ) ) )
4948exbii 1589 . . 3  |-  ( E. t ( G :
( t  X.  t
) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  (
( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) )  <->  E. t ( t  =  ran  G  /\  ( G : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  (
( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) ) ) )
5023, 49syl6bb 253 . 2  |-  ( G  e.  A  ->  ( G  e.  GrpOp  <->  E. t
( t  =  ran  G  /\  ( G :
( t  X.  t
) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  (
( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) ) ) ) )
51 rnexg 5072 . . 3  |-  ( G  e.  A  ->  ran  G  e.  _V )
52 isgrp.1 . . . . . 6  |-  X  =  ran  G
5352eqeq2i 2398 . . . . 5  |-  ( t  =  X  <->  t  =  ran  G )
54 xpeq1 4833 . . . . . . . . 9  |-  ( t  =  X  ->  (
t  X.  t )  =  ( X  X.  t ) )
55 xpeq2 4834 . . . . . . . . 9  |-  ( t  =  X  ->  ( X  X.  t )  =  ( X  X.  X
) )
5654, 55eqtrd 2420 . . . . . . . 8  |-  ( t  =  X  ->  (
t  X.  t )  =  ( X  X.  X ) )
5756feq2d 5522 . . . . . . 7  |-  ( t  =  X  ->  ( G : ( t  X.  t ) --> t  <->  G :
( X  X.  X
) --> t ) )
58 feq3 5519 . . . . . . 7  |-  ( t  =  X  ->  ( G : ( X  X.  X ) --> t  <->  G :
( X  X.  X
) --> X ) )
5957, 58bitrd 245 . . . . . 6  |-  ( t  =  X  ->  ( G : ( t  X.  t ) --> t  <->  G :
( X  X.  X
) --> X ) )
60 raleq 2848 . . . . . . . 8  |-  ( t  =  X  ->  ( A. z  e.  t 
( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) ) ) )
6160raleqbi1dv 2856 . . . . . . 7  |-  ( t  =  X  ->  ( A. y  e.  t  A. z  e.  t 
( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) ) ) )
6261raleqbi1dv 2856 . . . . . 6  |-  ( t  =  X  ->  ( A. x  e.  t  A. y  e.  t  A. z  e.  t 
( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) ) ) )
63 rexeq 2849 . . . . . . . . 9  |-  ( t  =  X  ->  ( E. y  e.  t 
( y G x )  =  u  <->  E. y  e.  X  ( y G x )  =  u ) )
6463anbi2d 685 . . . . . . . 8  |-  ( t  =  X  ->  (
( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u )  <->  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) )
6564raleqbi1dv 2856 . . . . . . 7  |-  ( t  =  X  ->  ( A. x  e.  t 
( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u )  <->  A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) )
6665rexeqbi1dv 2857 . . . . . 6  |-  ( t  =  X  ->  ( E. u  e.  t  A. x  e.  t 
( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u )  <->  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) )
6759, 62, 663anbi123d 1254 . . . . 5  |-  ( t  =  X  ->  (
( G : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  ( (
u G x )  =  x  /\  E. y  e.  t  (
y G x )  =  u ) )  <-> 
( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) ) )
6853, 67sylbir 205 . . . 4  |-  ( t  =  ran  G  -> 
( ( G :
( t  X.  t
) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  (
( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) )  <-> 
( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) ) )
6968ceqsexgv 3012 . . 3  |-  ( ran 
G  e.  _V  ->  ( E. t ( t  =  ran  G  /\  ( G : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  ( ( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) ) )  <-> 
( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) ) )
7051, 69syl 16 . 2  |-  ( G  e.  A  ->  ( E. t ( t  =  ran  G  /\  ( G : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  t  A. x  e.  t  (
( u G x )  =  x  /\  E. y  e.  t  ( y G x )  =  u ) ) )  <->  ( G :
( X  X.  X
) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  (
( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) ) )
7150, 70bitrd 245 1  |-  ( G  e.  A  ->  ( G  e.  GrpOp  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  (
( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651   _Vcvv 2900    X. cxp 4817   ran crn 4820   -->wf 5391   -onto->wfo 5393  (class class class)co 6021   GrpOpcgr 21623
This theorem is referenced by:  isgrpo2  21634  isgrpoi  21635  grpofo  21636  grpolidinv  21638  grpoass  21640  isgrp2d  21672  isgrpda  21734  grpomndo  21783
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-fo 5401  df-fv 5403  df-ov 6024  df-grpo 21628
  Copyright terms: Public domain W3C validator