MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishaus Unicode version

Theorem ishaus 17050
Description: Express the predicate " J is a Hausdorff space." (Contributed by NM, 8-Mar-2007.)
Hypothesis
Ref Expression
ist0.1  |-  X  = 
U. J
Assertion
Ref Expression
ishaus  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) ) )
Distinct variable groups:    x, y    m, n, x, y, J   
x, X, y
Allowed substitution hints:    X( m, n)

Proof of Theorem ishaus
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 unieq 3836 . . . 4  |-  ( j  =  J  ->  U. j  =  U. J )
2 ist0.1 . . . 4  |-  X  = 
U. J
31, 2syl6eqr 2333 . . 3  |-  ( j  =  J  ->  U. j  =  X )
4 rexeq 2737 . . . . . 6  |-  ( j  =  J  ->  ( E. m  e.  j 
( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) )
54rexeqbi1dv 2745 . . . . 5  |-  ( j  =  J  ->  ( E. n  e.  j  E. m  e.  j 
( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) )
65imbi2d 307 . . . 4  |-  ( j  =  J  ->  (
( x  =/=  y  ->  E. n  e.  j  E. m  e.  j  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) )  <-> 
( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) )
73, 6raleqbidv 2748 . . 3  |-  ( j  =  J  ->  ( A. y  e.  U. j
( x  =/=  y  ->  E. n  e.  j  E. m  e.  j  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) )  <->  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) )
83, 7raleqbidv 2748 . 2  |-  ( j  =  J  ->  ( A. x  e.  U. j A. y  e.  U. j
( x  =/=  y  ->  E. n  e.  j  E. m  e.  j  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) )  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) )
9 df-haus 17043 . 2  |-  Haus  =  { j  e.  Top  | 
A. x  e.  U. j A. y  e.  U. j ( x  =/=  y  ->  E. n  e.  j  E. m  e.  j  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) }
108, 9elrab2 2925 1  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    i^i cin 3151   (/)c0 3455   U.cuni 3827   Topctop 16631   Hauscha 17036
This theorem is referenced by:  hausnei  17056  haustop  17059  ishaus2  17079  cnhaus  17082  dishaus  17110  pthaus  17332  hausdiag  17339  txhaus  17341  xkohaus  17347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-uni 3828  df-haus 17043
  Copyright terms: Public domain W3C validator