MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishaus Structured version   Unicode version

Theorem ishaus 17378
Description: Express the predicate " J is a Hausdorff space." (Contributed by NM, 8-Mar-2007.)
Hypothesis
Ref Expression
ist0.1  |-  X  = 
U. J
Assertion
Ref Expression
ishaus  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) ) )
Distinct variable groups:    x, y    m, n, x, y, J   
x, X, y
Allowed substitution hints:    X( m, n)

Proof of Theorem ishaus
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 unieq 4016 . . . 4  |-  ( j  =  J  ->  U. j  =  U. J )
2 ist0.1 . . . 4  |-  X  = 
U. J
31, 2syl6eqr 2485 . . 3  |-  ( j  =  J  ->  U. j  =  X )
4 rexeq 2897 . . . . . 6  |-  ( j  =  J  ->  ( E. m  e.  j 
( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) )
54rexeqbi1dv 2905 . . . . 5  |-  ( j  =  J  ->  ( E. n  e.  j  E. m  e.  j 
( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) )
65imbi2d 308 . . . 4  |-  ( j  =  J  ->  (
( x  =/=  y  ->  E. n  e.  j  E. m  e.  j  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) )  <-> 
( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) )
73, 6raleqbidv 2908 . . 3  |-  ( j  =  J  ->  ( A. y  e.  U. j
( x  =/=  y  ->  E. n  e.  j  E. m  e.  j  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) )  <->  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) )
83, 7raleqbidv 2908 . 2  |-  ( j  =  J  ->  ( A. x  e.  U. j A. y  e.  U. j
( x  =/=  y  ->  E. n  e.  j  E. m  e.  j  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) )  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) )
9 df-haus 17371 . 2  |-  Haus  =  { j  e.  Top  | 
A. x  e.  U. j A. y  e.  U. j ( x  =/=  y  ->  E. n  e.  j  E. m  e.  j  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) }
108, 9elrab2 3086 1  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    i^i cin 3311   (/)c0 3620   U.cuni 4007   Topctop 16950   Hauscha 17364
This theorem is referenced by:  hausnei  17384  haustop  17387  ishaus2  17407  cnhaus  17410  dishaus  17438  pthaus  17662  hausdiag  17669  txhaus  17671  xkohaus  17677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-uni 4008  df-haus 17371
  Copyright terms: Public domain W3C validator