MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishil Structured version   Unicode version

Theorem ishil 16937
Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
ishil.k  |-  K  =  ( proj `  H
)
ishil.c  |-  C  =  ( CSubSp `  H )
Assertion
Ref Expression
ishil  |-  ( H  e.  Hil  <->  ( H  e.  PreHil  /\  dom  K  =  C ) )

Proof of Theorem ishil
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 fveq2 5720 . . . . 5  |-  ( h  =  H  ->  ( proj `  h )  =  ( proj `  H
) )
2 ishil.k . . . . 5  |-  K  =  ( proj `  H
)
31, 2syl6eqr 2485 . . . 4  |-  ( h  =  H  ->  ( proj `  h )  =  K )
43dmeqd 5064 . . 3  |-  ( h  =  H  ->  dom  ( proj `  h )  =  dom  K )
5 fveq2 5720 . . . 4  |-  ( h  =  H  ->  ( CSubSp `
 h )  =  ( CSubSp `  H )
)
6 ishil.c . . . 4  |-  C  =  ( CSubSp `  H )
75, 6syl6eqr 2485 . . 3  |-  ( h  =  H  ->  ( CSubSp `
 h )  =  C )
84, 7eqeq12d 2449 . 2  |-  ( h  =  H  ->  ( dom  ( proj `  h
)  =  ( CSubSp `  h )  <->  dom  K  =  C ) )
9 df-hil 16923 . 2  |-  Hil  =  { h  e.  PreHil  |  dom  ( proj `  h )  =  ( CSubSp `  h
) }
108, 9elrab2 3086 1  |-  ( H  e.  Hil  <->  ( H  e.  PreHil  /\  dom  K  =  C ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   dom cdm 4870   ` cfv 5446   PreHilcphl 16847   CSubSpccss 16880   projcpj 16919   Hilchs 16920
This theorem is referenced by:  ishil2  16938  hlhil  19336
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-dm 4880  df-iota 5410  df-fv 5454  df-hil 16923
  Copyright terms: Public domain W3C validator