MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishl2 Unicode version

Theorem ishl2 19285
Description: A Hilbert space is a complete complex pre-Hilbert space over  RR or  CC. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
hlress.f  |-  F  =  (Scalar `  W )
hlress.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
ishl2  |-  ( W  e.  CHil  <->  ( W  e. CMetSp  /\  W  e.  CPreHil  /\  K  e.  { RR ,  CC } ) )

Proof of Theorem ishl2
StepHypRef Expression
1 ishl 19277 . 2  |-  ( W  e.  CHil  <->  ( W  e. Ban  /\  W  e.  CPreHil ) )
2 df-3an 938 . . 3  |-  ( ( W  e. CMetSp  /\  K  e. 
{ RR ,  CC }  /\  W  e.  CPreHil )  <-> 
( ( W  e. CMetSp  /\  K  e.  { RR ,  CC } )  /\  W  e.  CPreHil ) )
3 3ancomb 945 . . 3  |-  ( ( W  e. CMetSp  /\  W  e.  CPreHil 
/\  K  e.  { RR ,  CC } )  <-> 
( W  e. CMetSp  /\  K  e.  { RR ,  CC }  /\  W  e.  CPreHil ) )
4 cphnvc 19100 . . . . . 6  |-  ( W  e.  CPreHil  ->  W  e. NrmVec )
5 hlress.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
65isbn 19252 . . . . . . . 8  |-  ( W  e. Ban 
<->  ( W  e. NrmVec  /\  W  e. CMetSp  /\  F  e. CMetSp )
)
7 3anass 940 . . . . . . . 8  |-  ( ( W  e. NrmVec  /\  W  e. CMetSp  /\  F  e. CMetSp )  <->  ( W  e. NrmVec  /\  ( W  e. CMetSp  /\  F  e. CMetSp ) ) )
86, 7bitri 241 . . . . . . 7  |-  ( W  e. Ban 
<->  ( W  e. NrmVec  /\  ( W  e. CMetSp  /\  F  e. CMetSp
) ) )
98baib 872 . . . . . 6  |-  ( W  e. NrmVec  ->  ( W  e. Ban  <->  ( W  e. CMetSp  /\  F  e. CMetSp
) ) )
104, 9syl 16 . . . . 5  |-  ( W  e.  CPreHil  ->  ( W  e. Ban  <->  ( W  e. CMetSp  /\  F  e. CMetSp
) ) )
11 hlress.k . . . . . . . . 9  |-  K  =  ( Base `  F
)
125, 11cphsca 19103 . . . . . . . 8  |-  ( W  e.  CPreHil  ->  F  =  (flds  K ) )
1312eleq1d 2478 . . . . . . 7  |-  ( W  e.  CPreHil  ->  ( F  e. CMetSp  <->  (flds  K )  e. CMetSp ) )
145, 11cphsubrg 19104 . . . . . . . . 9  |-  ( W  e.  CPreHil  ->  K  e.  (SubRing ` fld ) )
15 cphlvec 19099 . . . . . . . . . . 11  |-  ( W  e.  CPreHil  ->  W  e.  LVec )
165lvecdrng 16140 . . . . . . . . . . 11  |-  ( W  e.  LVec  ->  F  e.  DivRing )
1715, 16syl 16 . . . . . . . . . 10  |-  ( W  e.  CPreHil  ->  F  e.  DivRing )
1812, 17eqeltrrd 2487 . . . . . . . . 9  |-  ( W  e.  CPreHil  ->  (flds  K )  e.  DivRing )
19 eqid 2412 . . . . . . . . . . 11  |-  (flds  K )  =  (flds  K )
2019cncdrg 19274 . . . . . . . . . 10  |-  ( ( K  e.  (SubRing ` fld )  /\  (flds  K )  e.  DivRing  /\  (flds  K )  e. CMetSp )  ->  K  e.  { RR ,  CC } )
21203expia 1155 . . . . . . . . 9  |-  ( ( K  e.  (SubRing ` fld )  /\  (flds  K )  e.  DivRing )  ->  (
(flds  K
)  e. CMetSp  ->  K  e. 
{ RR ,  CC } ) )
2214, 18, 21syl2anc 643 . . . . . . . 8  |-  ( W  e.  CPreHil  ->  ( (flds  K )  e. CMetSp  ->  K  e.  { RR ,  CC } ) )
23 elpri 3802 . . . . . . . . 9  |-  ( K  e.  { RR ,  CC }  ->  ( K  =  RR  \/  K  =  CC ) )
24 oveq2 6056 . . . . . . . . . . 11  |-  ( K  =  RR  ->  (flds  K )  =  (flds  RR ) )
25 eqid 2412 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2625recld2 18806 . . . . . . . . . . . 12  |-  RR  e.  ( Clsd `  ( TopOpen ` fld ) )
27 cncms 19270 . . . . . . . . . . . . 13  |-fld  e. CMetSp
28 ax-resscn 9011 . . . . . . . . . . . . 13  |-  RR  C_  CC
29 eqid 2412 . . . . . . . . . . . . . 14  |-  (flds  RR )  =  (flds  RR )
30 cnfldbas 16670 . . . . . . . . . . . . . 14  |-  CC  =  ( Base ` fld )
3129, 30, 25cmsss 19264 . . . . . . . . . . . . 13  |-  ( (fld  e. CMetSp  /\  RR  C_  CC )  ->  ( (flds  RR )  e. CMetSp  <->  RR  e.  ( Clsd `  ( TopOpen ` fld ) ) ) )
3227, 28, 31mp2an 654 . . . . . . . . . . . 12  |-  ( (flds  RR )  e. CMetSp 
<->  RR  e.  ( Clsd `  ( TopOpen ` fld ) ) )
3326, 32mpbir 201 . . . . . . . . . . 11  |-  (flds  RR )  e. CMetSp
3424, 33syl6eqel 2500 . . . . . . . . . 10  |-  ( K  =  RR  ->  (flds  K )  e. CMetSp )
35 oveq2 6056 . . . . . . . . . . 11  |-  ( K  =  CC  ->  (flds  K )  =  (flds  CC ) )
3630ressid 13487 . . . . . . . . . . . . 13  |-  (fld  e. CMetSp  ->  (flds  CC )  =fld )
3727, 36ax-mp 8 . . . . . . . . . . . 12  |-  (flds  CC )  =fld
3837, 27eqeltri 2482 . . . . . . . . . . 11  |-  (flds  CC )  e. CMetSp
3935, 38syl6eqel 2500 . . . . . . . . . 10  |-  ( K  =  CC  ->  (flds  K )  e. CMetSp )
4034, 39jaoi 369 . . . . . . . . 9  |-  ( ( K  =  RR  \/  K  =  CC )  ->  (flds  K )  e. CMetSp )
4123, 40syl 16 . . . . . . . 8  |-  ( K  e.  { RR ,  CC }  ->  (flds  K )  e. CMetSp )
4222, 41impbid1 195 . . . . . . 7  |-  ( W  e.  CPreHil  ->  ( (flds  K )  e. CMetSp  <->  K  e.  { RR ,  CC }
) )
4313, 42bitrd 245 . . . . . 6  |-  ( W  e.  CPreHil  ->  ( F  e. CMetSp  <->  K  e.  { RR ,  CC } ) )
4443anbi2d 685 . . . . 5  |-  ( W  e.  CPreHil  ->  ( ( W  e. CMetSp  /\  F  e. CMetSp )  <->  ( W  e. CMetSp  /\  K  e. 
{ RR ,  CC } ) ) )
4510, 44bitrd 245 . . . 4  |-  ( W  e.  CPreHil  ->  ( W  e. Ban  <->  ( W  e. CMetSp  /\  K  e. 
{ RR ,  CC } ) ) )
4645pm5.32ri 620 . . 3  |-  ( ( W  e. Ban  /\  W  e.  CPreHil )  <->  ( ( W  e. CMetSp  /\  K  e. 
{ RR ,  CC } )  /\  W  e.  CPreHil ) )
472, 3, 463bitr4ri 270 . 2  |-  ( ( W  e. Ban  /\  W  e.  CPreHil )  <->  ( W  e. CMetSp  /\  W  e.  CPreHil  /\  K  e.  { RR ,  CC } ) )
481, 47bitri 241 1  |-  ( W  e.  CHil  <->  ( W  e. CMetSp  /\  W  e.  CPreHil  /\  K  e.  { RR ,  CC } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    C_ wss 3288   {cpr 3783   ` cfv 5421  (class class class)co 6048   CCcc 8952   RRcr 8953   Basecbs 13432   ↾s cress 13433  Scalarcsca 13495   TopOpenctopn 13612   DivRingcdr 15798  SubRingcsubrg 15827   LVecclvec 16137  ℂfldccnfld 16666   Clsdccld 17043  NrmVeccnvc 18590   CPreHilccph 19090  CMetSpccms 19246  Bancbn 19247   CHilchl 19248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032  ax-addf 9033  ax-mulf 9034
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-of 6272  df-1st 6316  df-2nd 6317  df-tpos 6446  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-2o 6692  df-oadd 6695  df-er 6872  df-map 6987  df-ixp 7031  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-fi 7382  df-sup 7412  df-oi 7443  df-card 7790  df-cda 8012  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-7 10027  df-8 10028  df-9 10029  df-10 10030  df-n0 10186  df-z 10247  df-dec 10347  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-ioo 10884  df-ico 10886  df-icc 10887  df-fz 11008  df-fzo 11099  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-sets 13438  df-ress 13439  df-plusg 13505  df-mulr 13506  df-starv 13507  df-sca 13508  df-vsca 13509  df-tset 13511  df-ple 13512  df-ds 13514  df-unif 13515  df-hom 13516  df-cco 13517  df-rest 13613  df-topn 13614  df-topgen 13630  df-pt 13631  df-prds 13634  df-xrs 13689  df-0g 13690  df-gsum 13691  df-qtop 13696  df-imas 13697  df-xps 13699  df-mre 13774  df-mrc 13775  df-acs 13777  df-mnd 14653  df-submnd 14702  df-grp 14775  df-minusg 14776  df-mulg 14778  df-subg 14904  df-cntz 15079  df-cmn 15377  df-mgp 15612  df-rng 15626  df-cring 15627  df-ur 15628  df-oppr 15691  df-dvdsr 15709  df-unit 15710  df-invr 15740  df-dvr 15751  df-drng 15800  df-subrg 15829  df-lvec 16138  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-fbas 16662  df-fg 16663  df-cnfld 16667  df-phl 16820  df-top 16926  df-bases 16928  df-topon 16929  df-topsp 16930  df-cld 17046  df-ntr 17047  df-cls 17048  df-nei 17125  df-cn 17253  df-cnp 17254  df-haus 17341  df-cmp 17412  df-tx 17555  df-hmeo 17748  df-fil 17839  df-flim 17932  df-fcls 17934  df-xms 18311  df-ms 18312  df-tms 18313  df-nvc 18596  df-cncf 18869  df-cph 19092  df-cfil 19169  df-cmet 19171  df-cms 19249  df-bn 19250  df-hl 19251
  Copyright terms: Public domain W3C validator