Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat2 Unicode version

Theorem ishlat2 29840
Description: The predicate "is a Hilbert lattice". Here we replace  K  e.  CvLat with the weaker  K  e.  AtLat and show the exchange property explicitly. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
ishlat.b  |-  B  =  ( Base `  K
)
ishlat.l  |-  .<_  =  ( le `  K )
ishlat.s  |-  .<  =  ( lt `  K )
ishlat.j  |-  .\/  =  ( join `  K )
ishlat.z  |-  .0.  =  ( 0. `  K )
ishlat.u  |-  .1.  =  ( 1. `  K )
ishlat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
ishlat2  |-  ( K  e.  HL  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, K, y, z
Allowed substitution hints:    .< ( x, y,
z)    .1. ( x, y, z)    .\/ ( x, y, z)    .<_ ( x, y, z)    .0. ( x, y, z)

Proof of Theorem ishlat2
StepHypRef Expression
1 ishlat.b . . 3  |-  B  =  ( Base `  K
)
2 ishlat.l . . 3  |-  .<_  =  ( le `  K )
3 ishlat.s . . 3  |-  .<  =  ( lt `  K )
4 ishlat.j . . 3  |-  .\/  =  ( join `  K )
5 ishlat.z . . 3  |-  .0.  =  ( 0. `  K )
6 ishlat.u . . 3  |-  .1.  =  ( 1. `  K )
7 ishlat.a . . 3  |-  A  =  ( Atoms `  K )
81, 2, 3, 4, 5, 6, 7ishlat1 29839 . 2  |-  ( K  e.  HL  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
91, 2, 4, 7iscvlat 29810 . . . . 5  |-  ( K  e.  CvLat 
<->  ( K  e.  AtLat  /\ 
A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) ) ) )
1093anbi3i 1146 . . . 4  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  <->  ( K  e.  OML  /\  K  e. 
CLat  /\  ( K  e. 
AtLat  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) ) )
11 anass 631 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat )  /\  K  e. 
AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  <-> 
( ( K  e. 
OML  /\  K  e.  CLat )  /\  ( K  e.  AtLat  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) ) )
12 df-3an 938 . . . . . 6  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  <->  ( ( K  e.  OML  /\  K  e.  CLat )  /\  K  e.  AtLat ) )
1312anbi1i 677 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  <->  ( ( ( K  e.  OML  /\  K  e.  CLat )  /\  K  e.  AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) ) )
14 df-3an 938 . . . . 5  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  ( K  e.  AtLat  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) ) )  <->  ( ( K  e.  OML  /\  K  e.  CLat )  /\  ( K  e.  AtLat  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) ) ) )
1511, 13, 143bitr4ri 270 . . . 4  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  ( K  e.  AtLat  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) ) )  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) )
1610, 15bitri 241 . . 3  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) )
1716anbi1i 677 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  ( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )  <->  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
18 anass 631 . . 3  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) )  /\  ( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  (
(  .0.  .<  x  /\  x  .<  y )  /\  ( y  .< 
z  /\  z  .<  .1.  ) ) ) ) ) )
19 anass 631 . . . . 5  |-  ( ( ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) )  /\  A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  (
(  .0.  .<  x  /\  x  .<  y )  /\  ( y  .< 
z  /\  z  .<  .1.  ) ) )  <->  ( A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) )  /\  ( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  (
(  .0.  .<  x  /\  x  .<  y )  /\  ( y  .< 
z  /\  z  .<  .1.  ) ) ) ) )
20 ancom 438 . . . . . . 7  |-  ( ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) )  /\  A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) ) )  <->  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) )
21 r19.26-2 2803 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  <-> 
( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) ) )
2220, 21bitr4i 244 . . . . . 6  |-  ( ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) )  /\  A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) ) )  <->  A. x  e.  A  A. y  e.  A  ( (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) )
2322anbi1i 677 . . . . 5  |-  ( ( ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) )  /\  A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  (
(  .0.  .<  x  /\  x  .<  y )  /\  ( y  .< 
z  /\  z  .<  .1.  ) ) )  <->  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )
2419, 23bitr3i 243 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) )  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )  <->  ( A. x  e.  A  A. y  e.  A  ( (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )
2524anbi2i 676 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) )  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
2618, 25bitri 241 . 2  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
278, 17, 263bitri 263 1  |-  ( K  e.  HL  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   A.wral 2670   E.wrex 2671   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   Basecbs 13428   lecple 13495   ltcplt 14357   joincjn 14360   0.cp0 14425   1.cp1 14426   CLatccla 14495   OMLcoml 29662   Atomscatm 29750   AtLatcal 29751   CvLatclc 29752   HLchlt 29837
This theorem is referenced by:  ishlatiN  29842  hlsuprexch  29867  hlhgt4  29874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-iota 5381  df-fv 5425  df-ov 6047  df-cvlat 29809  df-hlat 29838
  Copyright terms: Public domain W3C validator