MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishtpy Unicode version

Theorem ishtpy 18470
Description: Membership in the class of homotopies between two continuous functions. (Contributed by Mario Carneiro, 22-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
ishtpy.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
ishtpy.3  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
ishtpy.4  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
Assertion
Ref Expression
ishtpy  |-  ( ph  ->  ( H  e.  ( F ( J Htpy  K
) G )  <->  ( H  e.  ( ( J  tX  II )  Cn  K
)  /\  A. s  e.  X  ( (
s H 0 )  =  ( F `  s )  /\  (
s H 1 )  =  ( G `  s ) ) ) ) )
Distinct variable groups:    F, s    G, s    H, s    J, s    ph, s    X, s
Allowed substitution hint:    K( s)

Proof of Theorem ishtpy
Dummy variables  f 
g  h  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-htpy 18468 . . . . . 6  |- Htpy  =  ( j  e.  Top , 
k  e.  Top  |->  ( f  e.  ( j  Cn  k ) ,  g  e.  ( j  Cn  k )  |->  { h  e.  ( ( j  tX  II )  Cn  k )  | 
A. s  e.  U. j ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) ) } ) )
21a1i 10 . . . . 5  |-  ( ph  -> Htpy  =  ( j  e. 
Top ,  k  e.  Top  |->  ( f  e.  ( j  Cn  k
) ,  g  e.  ( j  Cn  k
)  |->  { h  e.  ( ( j  tX  II )  Cn  k
)  |  A. s  e.  U. j ( ( s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) ) )
3 simprl 732 . . . . . . 7  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
j  =  J )
4 simprr 733 . . . . . . 7  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
k  =  K )
53, 4oveq12d 5876 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
( j  Cn  k
)  =  ( J  Cn  K ) )
63oveq1d 5873 . . . . . . . 8  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
( j  tX  II )  =  ( J  tX  II ) )
76, 4oveq12d 5876 . . . . . . 7  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
( ( j  tX  II )  Cn  k
)  =  ( ( J  tX  II )  Cn  K ) )
83unieqd 3838 . . . . . . . . 9  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  U. J )
9 ishtpy.1 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  X ) )
10 toponuni 16665 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
119, 10syl 15 . . . . . . . . . 10  |-  ( ph  ->  X  =  U. J
)
1211adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  ->  X  =  U. J )
138, 12eqtr4d 2318 . . . . . . . 8  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  X
)
1413raleqdv 2742 . . . . . . 7  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
( A. s  e. 
U. j ( ( s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) )  <->  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) ) )
157, 14rabeqbidv 2783 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  ->  { h  e.  (
( j  tX  II )  Cn  k )  | 
A. s  e.  U. j ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) ) }  =  { h  e.  (
( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) } )
165, 5, 15mpt2eq123dv 5910 . . . . 5  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
( f  e.  ( j  Cn  k ) ,  g  e.  ( j  Cn  k ) 
|->  { h  e.  ( ( j  tX  II )  Cn  k )  | 
A. s  e.  U. j ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) ) } )  =  ( f  e.  ( J  Cn  K
) ,  g  e.  ( J  Cn  K
)  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) )
17 topontop 16664 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
189, 17syl 15 . . . . 5  |-  ( ph  ->  J  e.  Top )
19 ishtpy.3 . . . . . 6  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
20 cntop2 16971 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
2119, 20syl 15 . . . . 5  |-  ( ph  ->  K  e.  Top )
22 ssrab2 3258 . . . . . . . . . 10  |-  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } 
C_  ( ( J 
tX  II )  Cn  K )
23 ovex 5883 . . . . . . . . . . 11  |-  ( ( J  tX  II )  Cn  K )  e. 
_V
2423elpw2 4175 . . . . . . . . . 10  |-  ( { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) }  e.  ~P ( ( J  tX  II )  Cn  K
)  <->  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) }  C_  (
( J  tX  II )  Cn  K ) )
2522, 24mpbir 200 . . . . . . . . 9  |-  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) }  e.  ~P ( ( J  tX  II )  Cn  K )
2625rgen2w 2611 . . . . . . . 8  |-  A. f  e.  ( J  Cn  K
) A. g  e.  ( J  Cn  K
) { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) }  e.  ~P ( ( J  tX  II )  Cn  K )
27 eqid 2283 . . . . . . . . 9  |-  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K )  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } )  =  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K )  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } )
2827fmpt2 6191 . . . . . . . 8  |-  ( A. f  e.  ( J  Cn  K ) A. g  e.  ( J  Cn  K
) { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) }  e.  ~P ( ( J  tX  II )  Cn  K )  <->  ( f  e.  ( J  Cn  K
) ,  g  e.  ( J  Cn  K
)  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) : ( ( J  Cn  K )  X.  ( J  Cn  K ) ) --> ~P ( ( J  tX  II )  Cn  K
) )
2926, 28mpbi 199 . . . . . . 7  |-  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K )  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) : ( ( J  Cn  K )  X.  ( J  Cn  K ) ) --> ~P ( ( J  tX  II )  Cn  K
)
30 ovex 5883 . . . . . . . 8  |-  ( J  Cn  K )  e. 
_V
3130, 30xpex 4801 . . . . . . 7  |-  ( ( J  Cn  K )  X.  ( J  Cn  K ) )  e. 
_V
3223pwex 4193 . . . . . . 7  |-  ~P (
( J  tX  II )  Cn  K )  e. 
_V
33 fex2 5401 . . . . . . 7  |-  ( ( ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K ) 
|->  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) } ) : ( ( J  Cn  K )  X.  ( J  Cn  K ) ) --> ~P ( ( J 
tX  II )  Cn  K )  /\  (
( J  Cn  K
)  X.  ( J  Cn  K ) )  e.  _V  /\  ~P ( ( J  tX  II )  Cn  K
)  e.  _V )  ->  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K ) 
|->  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) } )  e. 
_V )
3429, 31, 32, 33mp3an 1277 . . . . . 6  |-  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K )  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } )  e.  _V
3534a1i 10 . . . . 5  |-  ( ph  ->  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K ) 
|->  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) } )  e. 
_V )
362, 16, 18, 21, 35ovmpt2d 5975 . . . 4  |-  ( ph  ->  ( J Htpy  K )  =  ( f  e.  ( J  Cn  K
) ,  g  e.  ( J  Cn  K
)  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) )
37 fveq1 5524 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  s )  =  ( F `  s ) )
3837eqeq2d 2294 . . . . . . . 8  |-  ( f  =  F  ->  (
( s h 0 )  =  ( f `
 s )  <->  ( s
h 0 )  =  ( F `  s
) ) )
39 fveq1 5524 . . . . . . . . 9  |-  ( g  =  G  ->  (
g `  s )  =  ( G `  s ) )
4039eqeq2d 2294 . . . . . . . 8  |-  ( g  =  G  ->  (
( s h 1 )  =  ( g `
 s )  <->  ( s
h 1 )  =  ( G `  s
) ) )
4138, 40bi2anan9 843 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) )  <->  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) ) )
4241adantl 452 . . . . . 6  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
( ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) )  <->  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) ) )
4342ralbidv 2563 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
( A. s  e.  X  ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) )  <->  A. s  e.  X  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) ) )
4443rabbidv 2780 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  ->  { h  e.  (
( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) }  =  {
h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( F `  s )  /\  ( s h 1 )  =  ( G `  s ) ) } )
45 ishtpy.4 . . . 4  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
4623rabex 4165 . . . . 5  |-  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) }  e.  _V
4746a1i 10 . . . 4  |-  ( ph  ->  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( F `  s )  /\  ( s h 1 )  =  ( G `  s ) ) }  e.  _V )
4836, 44, 19, 45, 47ovmpt2d 5975 . . 3  |-  ( ph  ->  ( F ( J Htpy 
K ) G )  =  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) } )
4948eleq2d 2350 . 2  |-  ( ph  ->  ( H  e.  ( F ( J Htpy  K
) G )  <->  H  e.  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( F `  s )  /\  ( s h 1 )  =  ( G `  s ) ) } ) )
50 oveq 5864 . . . . . 6  |-  ( h  =  H  ->  (
s h 0 )  =  ( s H 0 ) )
5150eqeq1d 2291 . . . . 5  |-  ( h  =  H  ->  (
( s h 0 )  =  ( F `
 s )  <->  ( s H 0 )  =  ( F `  s
) ) )
52 oveq 5864 . . . . . 6  |-  ( h  =  H  ->  (
s h 1 )  =  ( s H 1 ) )
5352eqeq1d 2291 . . . . 5  |-  ( h  =  H  ->  (
( s h 1 )  =  ( G `
 s )  <->  ( s H 1 )  =  ( G `  s
) ) )
5451, 53anbi12d 691 . . . 4  |-  ( h  =  H  ->  (
( ( s h 0 )  =  ( F `  s )  /\  ( s h 1 )  =  ( G `  s ) )  <->  ( ( s H 0 )  =  ( F `  s
)  /\  ( s H 1 )  =  ( G `  s
) ) ) )
5554ralbidv 2563 . . 3  |-  ( h  =  H  ->  ( A. s  e.  X  ( ( s h 0 )  =  ( F `  s )  /\  ( s h 1 )  =  ( G `  s ) )  <->  A. s  e.  X  ( ( s H 0 )  =  ( F `  s )  /\  ( s H 1 )  =  ( G `  s ) ) ) )
5655elrab 2923 . 2  |-  ( H  e.  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) }  <-> 
( H  e.  ( ( J  tX  II )  Cn  K )  /\  A. s  e.  X  ( ( s H 0 )  =  ( F `
 s )  /\  ( s H 1 )  =  ( G `
 s ) ) ) )
5749, 56syl6bb 252 1  |-  ( ph  ->  ( H  e.  ( F ( J Htpy  K
) G )  <->  ( H  e.  ( ( J  tX  II )  Cn  K
)  /\  A. s  e.  X  ( (
s H 0 )  =  ( F `  s )  /\  (
s H 1 )  =  ( G `  s ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625   U.cuni 3827    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   0cc0 8737   1c1 8738   Topctop 16631  TopOnctopon 16632    Cn ccn 16954    tX ctx 17255   IIcii 18379   Htpy chtpy 18465
This theorem is referenced by:  htpycn  18471  htpyi  18472  ishtpyd  18473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-top 16636  df-topon 16639  df-cn 16957  df-htpy 18468
  Copyright terms: Public domain W3C validator