MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishtpyd Structured version   Unicode version

Theorem ishtpyd 18992
Description: Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
ishtpy.3  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
ishtpy.4  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
ishtpyd.1  |-  ( ph  ->  H  e.  ( ( J  tX  II )  Cn  K ) )
ishtpyd.2  |-  ( (
ph  /\  s  e.  X )  ->  (
s H 0 )  =  ( F `  s ) )
ishtpyd.3  |-  ( (
ph  /\  s  e.  X )  ->  (
s H 1 )  =  ( G `  s ) )
Assertion
Ref Expression
ishtpyd  |-  ( ph  ->  H  e.  ( F ( J Htpy  K ) G ) )
Distinct variable groups:    F, s    G, s    H, s    J, s    ph, s    X, s
Allowed substitution hint:    K( s)

Proof of Theorem ishtpyd
StepHypRef Expression
1 ishtpyd.1 . 2  |-  ( ph  ->  H  e.  ( ( J  tX  II )  Cn  K ) )
2 ishtpyd.2 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  (
s H 0 )  =  ( F `  s ) )
3 ishtpyd.3 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  (
s H 1 )  =  ( G `  s ) )
42, 3jca 519 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( s H 0 )  =  ( F `
 s )  /\  ( s H 1 )  =  ( G `
 s ) ) )
54ralrimiva 2781 . 2  |-  ( ph  ->  A. s  e.  X  ( ( s H 0 )  =  ( F `  s )  /\  ( s H 1 )  =  ( G `  s ) ) )
6 ishtpy.1 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
7 ishtpy.3 . . 3  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
8 ishtpy.4 . . 3  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
96, 7, 8ishtpy 18989 . 2  |-  ( ph  ->  ( H  e.  ( F ( J Htpy  K
) G )  <->  ( H  e.  ( ( J  tX  II )  Cn  K
)  /\  A. s  e.  X  ( (
s H 0 )  =  ( F `  s )  /\  (
s H 1 )  =  ( G `  s ) ) ) ) )
101, 5, 9mpbir2and 889 1  |-  ( ph  ->  H  e.  ( F ( J Htpy  K ) G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   ` cfv 5446  (class class class)co 6073   0cc0 8982   1c1 8983  TopOnctopon 16951    Cn ccn 17280    tX ctx 17584   IIcii 18897   Htpy chtpy 18984
This theorem is referenced by:  htpycom  18993  htpyid  18994  htpyco1  18995  htpyco2  18996  htpycc  18997  isphtpy2d  19004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-map 7012  df-top 16955  df-topon 16958  df-cn 17283  df-htpy 18987
  Copyright terms: Public domain W3C validator