MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isirred Unicode version

Theorem isirred 15497
Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1  |-  B  =  ( Base `  R
)
irred.2  |-  U  =  (Unit `  R )
irred.3  |-  I  =  (Irred `  R )
irred.4  |-  N  =  ( B  \  U
)
irred.5  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isirred  |-  ( X  e.  I  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
Distinct variable groups:    x, y, N    x, R, y    x, X, y
Allowed substitution hints:    B( x, y)    .x. ( x, y)    U( x, y)    I( x, y)

Proof of Theorem isirred
Dummy variables  r 
b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 5570 . . . 4  |-  ( X  e.  (Irred `  R
)  ->  R  e.  dom Irred )
2 irred.3 . . . 4  |-  I  =  (Irred `  R )
31, 2eleq2s 2388 . . 3  |-  ( X  e.  I  ->  R  e.  dom Irred )
4 elex 2809 . . 3  |-  ( R  e.  dom Irred  ->  R  e. 
_V )
53, 4syl 15 . 2  |-  ( X  e.  I  ->  R  e.  _V )
6 eldifi 3311 . . . . . 6  |-  ( X  e.  ( B  \  U )  ->  X  e.  B )
7 irred.4 . . . . . 6  |-  N  =  ( B  \  U
)
86, 7eleq2s 2388 . . . . 5  |-  ( X  e.  N  ->  X  e.  B )
9 irred.1 . . . . 5  |-  B  =  ( Base `  R
)
108, 9syl6eleq 2386 . . . 4  |-  ( X  e.  N  ->  X  e.  ( Base `  R
) )
11 elfvdm 5570 . . . 4  |-  ( X  e.  ( Base `  R
)  ->  R  e.  dom  Base )
12 elex 2809 . . . 4  |-  ( R  e.  dom  Base  ->  R  e.  _V )
1310, 11, 123syl 18 . . 3  |-  ( X  e.  N  ->  R  e.  _V )
1413adantr 451 . 2  |-  ( ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  (
x  .x.  y )  =/=  X )  ->  R  e.  _V )
15 fvex 5555 . . . . . . . 8  |-  ( Base `  r )  e.  _V
16 difexg 4178 . . . . . . . 8  |-  ( (
Base `  r )  e.  _V  ->  ( ( Base `  r )  \ 
(Unit `  r )
)  e.  _V )
1715, 16mp1i 11 . . . . . . 7  |-  ( r  =  R  ->  (
( Base `  r )  \  (Unit `  r )
)  e.  _V )
18 simpr 447 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  b  =  ( ( Base `  r )  \  (Unit `  r ) ) )
19 simpl 443 . . . . . . . . . . . . 13  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  r  =  R )
2019fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( Base `  r )  =  ( Base `  R
) )
2120, 9syl6eqr 2346 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( Base `  r )  =  B )
2219fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (Unit `  r )  =  (Unit `  R ) )
23 irred.2 . . . . . . . . . . . 12  |-  U  =  (Unit `  R )
2422, 23syl6eqr 2346 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (Unit `  r )  =  U )
2521, 24difeq12d 3308 . . . . . . . . . 10  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
( Base `  r )  \  (Unit `  r )
)  =  ( B 
\  U ) )
2625, 7syl6eqr 2346 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
( Base `  r )  \  (Unit `  r )
)  =  N )
2718, 26eqtrd 2328 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  b  =  N )
2819fveq2d 5545 . . . . . . . . . . . . 13  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( .r `  r )  =  ( .r `  R
) )
29 irred.5 . . . . . . . . . . . . 13  |-  .x.  =  ( .r `  R )
3028, 29syl6eqr 2346 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( .r `  r )  = 
.x.  )
3130oveqd 5891 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
x ( .r `  r ) y )  =  ( x  .x.  y ) )
3231neeq1d 2472 . . . . . . . . . 10  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
( x ( .r
`  r ) y )  =/=  z  <->  ( x  .x.  y )  =/=  z
) )
3327, 32raleqbidv 2761 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( A. y  e.  b 
( x ( .r
`  r ) y )  =/=  z  <->  A. y  e.  N  ( x  .x.  y )  =/=  z
) )
3427, 33raleqbidv 2761 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( A. x  e.  b  A. y  e.  b 
( x ( .r
`  r ) y )  =/=  z  <->  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z
) )
3527, 34rabeqbidv 2796 . . . . . . 7  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  { z  e.  b  |  A. x  e.  b  A. y  e.  b  (
x ( .r `  r ) y )  =/=  z }  =  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } )
3617, 35csbied 3136 . . . . . 6  |-  ( r  =  R  ->  [_ (
( Base `  r )  \  (Unit `  r )
)  /  b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x ( .r `  r ) y )  =/=  z }  =  { z  e.  N  |  A. x  e.  N  A. y  e.  N  (
x  .x.  y )  =/=  z } )
37 df-irred 15441 . . . . . 6  |- Irred  =  ( r  e.  _V  |->  [_ ( ( Base `  r
)  \  (Unit `  r
) )  /  b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x ( .r `  r ) y )  =/=  z } )
38 fvex 5555 . . . . . . . . . 10  |-  ( Base `  R )  e.  _V
399, 38eqeltri 2366 . . . . . . . . 9  |-  B  e. 
_V
40 difexg 4178 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( B  \  U )  e. 
_V )
4139, 40ax-mp 8 . . . . . . . 8  |-  ( B 
\  U )  e. 
_V
427, 41eqeltri 2366 . . . . . . 7  |-  N  e. 
_V
4342rabex 4181 . . . . . 6  |-  { z  e.  N  |  A. x  e.  N  A. y  e.  N  (
x  .x.  y )  =/=  z }  e.  _V
4436, 37, 43fvmpt 5618 . . . . 5  |-  ( R  e.  _V  ->  (Irred `  R )  =  {
z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } )
452, 44syl5eq 2340 . . . 4  |-  ( R  e.  _V  ->  I  =  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } )
4645eleq2d 2363 . . 3  |-  ( R  e.  _V  ->  ( X  e.  I  <->  X  e.  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } ) )
47 neeq2 2468 . . . . 5  |-  ( z  =  X  ->  (
( x  .x.  y
)  =/=  z  <->  ( x  .x.  y )  =/=  X
) )
48472ralbidv 2598 . . . 4  |-  ( z  =  X  ->  ( A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z  <->  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
4948elrab 2936 . . 3  |-  ( X  e.  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } 
<->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X ) )
5046, 49syl6bb 252 . 2  |-  ( R  e.  _V  ->  ( X  e.  I  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) ) )
515, 14, 50pm5.21nii 342 1  |-  ( X  e.  I  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   {crab 2560   _Vcvv 2801   [_csb 3094    \ cdif 3162   dom cdm 4705   ` cfv 5271  (class class class)co 5874   Basecbs 13164   .rcmulr 13225  Unitcui 15437  Irredcir 15438
This theorem is referenced by:  isnirred  15498  isirred2  15499  opprirred  15500
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-irred 15441
  Copyright terms: Public domain W3C validator