MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isirred Unicode version

Theorem isirred 15733
Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1  |-  B  =  ( Base `  R
)
irred.2  |-  U  =  (Unit `  R )
irred.3  |-  I  =  (Irred `  R )
irred.4  |-  N  =  ( B  \  U
)
irred.5  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isirred  |-  ( X  e.  I  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
Distinct variable groups:    x, y, N    x, R, y    x, X, y
Allowed substitution hints:    B( x, y)    .x. ( x, y)    U( x, y)    I( x, y)

Proof of Theorem isirred
Dummy variables  r 
b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 5699 . . . 4  |-  ( X  e.  (Irred `  R
)  ->  R  e.  dom Irred )
2 irred.3 . . . 4  |-  I  =  (Irred `  R )
31, 2eleq2s 2481 . . 3  |-  ( X  e.  I  ->  R  e.  dom Irred )
4 elex 2909 . . 3  |-  ( R  e.  dom Irred  ->  R  e. 
_V )
53, 4syl 16 . 2  |-  ( X  e.  I  ->  R  e.  _V )
6 eldifi 3414 . . . . . 6  |-  ( X  e.  ( B  \  U )  ->  X  e.  B )
7 irred.4 . . . . . 6  |-  N  =  ( B  \  U
)
86, 7eleq2s 2481 . . . . 5  |-  ( X  e.  N  ->  X  e.  B )
9 irred.1 . . . . 5  |-  B  =  ( Base `  R
)
108, 9syl6eleq 2479 . . . 4  |-  ( X  e.  N  ->  X  e.  ( Base `  R
) )
1110elfvexd 5701 . . 3  |-  ( X  e.  N  ->  R  e.  _V )
1211adantr 452 . 2  |-  ( ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  (
x  .x.  y )  =/=  X )  ->  R  e.  _V )
13 fvex 5684 . . . . . . . 8  |-  ( Base `  r )  e.  _V
14 difexg 4294 . . . . . . . 8  |-  ( (
Base `  r )  e.  _V  ->  ( ( Base `  r )  \ 
(Unit `  r )
)  e.  _V )
1513, 14mp1i 12 . . . . . . 7  |-  ( r  =  R  ->  (
( Base `  r )  \  (Unit `  r )
)  e.  _V )
16 simpr 448 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  b  =  ( ( Base `  r )  \  (Unit `  r ) ) )
17 simpl 444 . . . . . . . . . . . . 13  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  r  =  R )
1817fveq2d 5674 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( Base `  r )  =  ( Base `  R
) )
1918, 9syl6eqr 2439 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( Base `  r )  =  B )
2017fveq2d 5674 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (Unit `  r )  =  (Unit `  R ) )
21 irred.2 . . . . . . . . . . . 12  |-  U  =  (Unit `  R )
2220, 21syl6eqr 2439 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (Unit `  r )  =  U )
2319, 22difeq12d 3411 . . . . . . . . . 10  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
( Base `  r )  \  (Unit `  r )
)  =  ( B 
\  U ) )
2423, 7syl6eqr 2439 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
( Base `  r )  \  (Unit `  r )
)  =  N )
2516, 24eqtrd 2421 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  b  =  N )
2617fveq2d 5674 . . . . . . . . . . . . 13  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( .r `  r )  =  ( .r `  R
) )
27 irred.5 . . . . . . . . . . . . 13  |-  .x.  =  ( .r `  R )
2826, 27syl6eqr 2439 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( .r `  r )  = 
.x.  )
2928oveqd 6039 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
x ( .r `  r ) y )  =  ( x  .x.  y ) )
3029neeq1d 2565 . . . . . . . . . 10  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
( x ( .r
`  r ) y )  =/=  z  <->  ( x  .x.  y )  =/=  z
) )
3125, 30raleqbidv 2861 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( A. y  e.  b 
( x ( .r
`  r ) y )  =/=  z  <->  A. y  e.  N  ( x  .x.  y )  =/=  z
) )
3225, 31raleqbidv 2861 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( A. x  e.  b  A. y  e.  b 
( x ( .r
`  r ) y )  =/=  z  <->  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z
) )
3325, 32rabeqbidv 2896 . . . . . . 7  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  { z  e.  b  |  A. x  e.  b  A. y  e.  b  (
x ( .r `  r ) y )  =/=  z }  =  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } )
3415, 33csbied 3238 . . . . . 6  |-  ( r  =  R  ->  [_ (
( Base `  r )  \  (Unit `  r )
)  /  b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x ( .r `  r ) y )  =/=  z }  =  { z  e.  N  |  A. x  e.  N  A. y  e.  N  (
x  .x.  y )  =/=  z } )
35 df-irred 15677 . . . . . 6  |- Irred  =  ( r  e.  _V  |->  [_ ( ( Base `  r
)  \  (Unit `  r
) )  /  b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x ( .r `  r ) y )  =/=  z } )
36 fvex 5684 . . . . . . . . . 10  |-  ( Base `  R )  e.  _V
379, 36eqeltri 2459 . . . . . . . . 9  |-  B  e. 
_V
38 difexg 4294 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( B  \  U )  e. 
_V )
3937, 38ax-mp 8 . . . . . . . 8  |-  ( B 
\  U )  e. 
_V
407, 39eqeltri 2459 . . . . . . 7  |-  N  e. 
_V
4140rabex 4297 . . . . . 6  |-  { z  e.  N  |  A. x  e.  N  A. y  e.  N  (
x  .x.  y )  =/=  z }  e.  _V
4234, 35, 41fvmpt 5747 . . . . 5  |-  ( R  e.  _V  ->  (Irred `  R )  =  {
z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } )
432, 42syl5eq 2433 . . . 4  |-  ( R  e.  _V  ->  I  =  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } )
4443eleq2d 2456 . . 3  |-  ( R  e.  _V  ->  ( X  e.  I  <->  X  e.  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } ) )
45 neeq2 2561 . . . . 5  |-  ( z  =  X  ->  (
( x  .x.  y
)  =/=  z  <->  ( x  .x.  y )  =/=  X
) )
46452ralbidv 2693 . . . 4  |-  ( z  =  X  ->  ( A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z  <->  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
4746elrab 3037 . . 3  |-  ( X  e.  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } 
<->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X ) )
4844, 47syl6bb 253 . 2  |-  ( R  e.  _V  ->  ( X  e.  I  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) ) )
495, 12, 48pm5.21nii 343 1  |-  ( X  e.  I  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651   {crab 2655   _Vcvv 2901   [_csb 3196    \ cdif 3262   dom cdm 4820   ` cfv 5396  (class class class)co 6022   Basecbs 13398   .rcmulr 13459  Unitcui 15673  Irredcir 15674
This theorem is referenced by:  isnirred  15734  isirred2  15735  opprirred  15736
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-iota 5360  df-fun 5398  df-fv 5404  df-ov 6025  df-irred 15677
  Copyright terms: Public domain W3C validator