Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islaut Structured version   Unicode version

Theorem islaut 30817
Description: The predictate "is a lattice automorphism." (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b  |-  B  =  ( Base `  K
)
lautset.l  |-  .<_  =  ( le `  K )
lautset.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
islaut  |-  ( K  e.  A  ->  ( F  e.  I  <->  ( F : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( F `  x )  .<_  ( F `
 y ) ) ) ) )
Distinct variable groups:    x, y, B    x, F, y    x, K, y
Allowed substitution hints:    A( x, y)    I( x, y)    .<_ ( x, y)

Proof of Theorem islaut
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 lautset.b . . . 4  |-  B  =  ( Base `  K
)
2 lautset.l . . . 4  |-  .<_  =  ( le `  K )
3 lautset.i . . . 4  |-  I  =  ( LAut `  K
)
41, 2, 3lautset 30816 . . 3  |-  ( K  e.  A  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
54eleq2d 2502 . 2  |-  ( K  e.  A  ->  ( F  e.  I  <->  F  e.  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } ) )
6 f1of 5666 . . . . 5  |-  ( F : B -1-1-onto-> B  ->  F : B
--> B )
7 fvex 5734 . . . . . 6  |-  ( Base `  K )  e.  _V
81, 7eqeltri 2505 . . . . 5  |-  B  e. 
_V
9 fex 5961 . . . . 5  |-  ( ( F : B --> B  /\  B  e.  _V )  ->  F  e.  _V )
106, 8, 9sylancl 644 . . . 4  |-  ( F : B -1-1-onto-> B  ->  F  e.  _V )
1110adantr 452 . . 3  |-  ( ( F : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( F `  x )  .<_  ( F `
 y ) ) )  ->  F  e.  _V )
12 f1oeq1 5657 . . . 4  |-  ( f  =  F  ->  (
f : B -1-1-onto-> B  <->  F : B
-1-1-onto-> B ) )
13 fveq1 5719 . . . . . . 7  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
14 fveq1 5719 . . . . . . 7  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
1513, 14breq12d 4217 . . . . . 6  |-  ( f  =  F  ->  (
( f `  x
)  .<_  ( f `  y )  <->  ( F `  x )  .<_  ( F `
 y ) ) )
1615bibi2d 310 . . . . 5  |-  ( f  =  F  ->  (
( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) )  <-> 
( x  .<_  y  <->  ( F `  x )  .<_  ( F `
 y ) ) ) )
17162ralbidv 2739 . . . 4  |-  ( f  =  F  ->  ( A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) )  <->  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( F `  x )  .<_  ( F `
 y ) ) ) )
1812, 17anbi12d 692 . . 3  |-  ( f  =  F  ->  (
( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) )  <->  ( F : B
-1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <-> 
( F `  x
)  .<_  ( F `  y ) ) ) ) )
1911, 18elab3 3081 . 2  |-  ( F  e.  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) }  <->  ( F : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( F `  x )  .<_  ( F `
 y ) ) ) )
205, 19syl6bb 253 1  |-  ( K  e.  A  ->  ( F  e.  I  <->  ( F : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( F `  x )  .<_  ( F `
 y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   _Vcvv 2948   class class class wbr 4204   -->wf 5442   -1-1-onto->wf1o 5445   ` cfv 5446   Basecbs 13461   lecple 13528   LAutclaut 30719
This theorem is referenced by:  lautle  30818  laut1o  30819  lautcnv  30824  idlaut  30830  lautco  30831  cdleme50laut  31281
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-map 7012  df-laut 30723
  Copyright terms: Public domain W3C validator