Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islfl Structured version   Unicode version

Theorem islfl 29956
Description: The predicate "is a linear functional". (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflset.v  |-  V  =  ( Base `  W
)
lflset.a  |-  .+  =  ( +g  `  W )
lflset.d  |-  D  =  (Scalar `  W )
lflset.s  |-  .x.  =  ( .s `  W )
lflset.k  |-  K  =  ( Base `  D
)
lflset.p  |-  .+^  =  ( +g  `  D )
lflset.t  |-  .X.  =  ( .r `  D )
lflset.f  |-  F  =  (LFnl `  W )
Assertion
Ref Expression
islfl  |-  ( W  e.  X  ->  ( G  e.  F  <->  ( G : V --> K  /\  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( (
r  .x.  x )  .+  y ) )  =  ( ( r  .X.  ( G `  x ) )  .+^  ( G `  y ) ) ) ) )
Distinct variable groups:    K, r    x, y, V    x, r,
y, W    G, r, x, y
Allowed substitution hints:    D( x, y, r)    .+ ( x, y, r)    .+^ (
x, y, r)    .x. ( x, y, r)    .X. ( x, y, r)    F( x, y, r)    K( x, y)    V( r)    X( x, y, r)

Proof of Theorem islfl
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 lflset.v . . . 4  |-  V  =  ( Base `  W
)
2 lflset.a . . . 4  |-  .+  =  ( +g  `  W )
3 lflset.d . . . 4  |-  D  =  (Scalar `  W )
4 lflset.s . . . 4  |-  .x.  =  ( .s `  W )
5 lflset.k . . . 4  |-  K  =  ( Base `  D
)
6 lflset.p . . . 4  |-  .+^  =  ( +g  `  D )
7 lflset.t . . . 4  |-  .X.  =  ( .r `  D )
8 lflset.f . . . 4  |-  F  =  (LFnl `  W )
91, 2, 3, 4, 5, 6, 7, 8lflset 29955 . . 3  |-  ( W  e.  X  ->  F  =  { f  e.  ( K  ^m  V )  |  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( f `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  (
f `  x )
)  .+^  ( f `  y ) ) } )
109eleq2d 2509 . 2  |-  ( W  e.  X  ->  ( G  e.  F  <->  G  e.  { f  e.  ( K  ^m  V )  | 
A. r  e.  K  A. x  e.  V  A. y  e.  V  ( f `  (
( r  .x.  x
)  .+  y )
)  =  ( ( r  .X.  ( f `  x ) )  .+^  ( f `  y
) ) } ) )
11 fveq1 5756 . . . . . . 7  |-  ( f  =  G  ->  (
f `  ( (
r  .x.  x )  .+  y ) )  =  ( G `  (
( r  .x.  x
)  .+  y )
) )
12 fveq1 5756 . . . . . . . . 9  |-  ( f  =  G  ->  (
f `  x )  =  ( G `  x ) )
1312oveq2d 6126 . . . . . . . 8  |-  ( f  =  G  ->  (
r  .X.  ( f `  x ) )  =  ( r  .X.  ( G `  x )
) )
14 fveq1 5756 . . . . . . . 8  |-  ( f  =  G  ->  (
f `  y )  =  ( G `  y ) )
1513, 14oveq12d 6128 . . . . . . 7  |-  ( f  =  G  ->  (
( r  .X.  (
f `  x )
)  .+^  ( f `  y ) )  =  ( ( r  .X.  ( G `  x ) )  .+^  ( G `  y ) ) )
1611, 15eqeq12d 2456 . . . . . 6  |-  ( f  =  G  ->  (
( f `  (
( r  .x.  x
)  .+  y )
)  =  ( ( r  .X.  ( f `  x ) )  .+^  ( f `  y
) )  <->  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) ) ) )
17162ralbidv 2753 . . . . 5  |-  ( f  =  G  ->  ( A. x  e.  V  A. y  e.  V  ( f `  (
( r  .x.  x
)  .+  y )
)  =  ( ( r  .X.  ( f `  x ) )  .+^  ( f `  y
) )  <->  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) ) ) )
1817ralbidv 2731 . . . 4  |-  ( f  =  G  ->  ( A. r  e.  K  A. x  e.  V  A. y  e.  V  ( f `  (
( r  .x.  x
)  .+  y )
)  =  ( ( r  .X.  ( f `  x ) )  .+^  ( f `  y
) )  <->  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) ) ) )
1918elrab 3098 . . 3  |-  ( G  e.  { f  e.  ( K  ^m  V
)  |  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( f `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  (
f `  x )
)  .+^  ( f `  y ) ) }  <-> 
( G  e.  ( K  ^m  V )  /\  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) ) ) )
20 fvex 5771 . . . . . 6  |-  ( Base `  D )  e.  _V
215, 20eqeltri 2512 . . . . 5  |-  K  e. 
_V
22 fvex 5771 . . . . . 6  |-  ( Base `  W )  e.  _V
231, 22eqeltri 2512 . . . . 5  |-  V  e. 
_V
2421, 23elmap 7071 . . . 4  |-  ( G  e.  ( K  ^m  V )  <->  G : V
--> K )
2524anbi1i 678 . . 3  |-  ( ( G  e.  ( K  ^m  V )  /\  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( (
r  .x.  x )  .+  y ) )  =  ( ( r  .X.  ( G `  x ) )  .+^  ( G `  y ) ) )  <-> 
( G : V --> K  /\  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) ) ) )
2619, 25bitri 242 . 2  |-  ( G  e.  { f  e.  ( K  ^m  V
)  |  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( f `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  (
f `  x )
)  .+^  ( f `  y ) ) }  <-> 
( G : V --> K  /\  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) ) ) )
2710, 26syl6bb 254 1  |-  ( W  e.  X  ->  ( G  e.  F  <->  ( G : V --> K  /\  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( (
r  .x.  x )  .+  y ) )  =  ( ( r  .X.  ( G `  x ) )  .+^  ( G `  y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   A.wral 2711   {crab 2715   _Vcvv 2962   -->wf 5479   ` cfv 5483  (class class class)co 6110    ^m cmap 7047   Basecbs 13500   +g cplusg 13560   .rcmulr 13561  Scalarcsca 13563   .scvsca 13564  LFnlclfn 29953
This theorem is referenced by:  lfli  29957  islfld  29958  lflf  29959  lfl0f  29965  lfladdcl  29967  lflnegcl  29971  lshpkrcl  30012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-map 7049  df-lfl 29954
  Copyright terms: Public domain W3C validator