Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islfld Unicode version

Theorem islfld 29252
Description: Properties that determine a linear functional. TODO: use this in place of islfl 29250 when it shortens the proof. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
islfld.v  |-  ( ph  ->  V  =  ( Base `  W ) )
islfld.a  |-  ( ph  ->  .+  =  ( +g  `  W ) )
islfld.d  |-  ( ph  ->  D  =  (Scalar `  W ) )
islfld.s  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
islfld.k  |-  ( ph  ->  K  =  ( Base `  D ) )
islfld.p  |-  ( ph  -> 
.+^  =  ( +g  `  D ) )
islfld.t  |-  ( ph  ->  .X.  =  ( .r
`  D ) )
islfld.f  |-  ( ph  ->  F  =  (LFnl `  W ) )
islfld.u  |-  ( ph  ->  G : V --> K )
islfld.l  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( G `  (
( r  .x.  x
)  .+  y )
)  =  ( ( r  .X.  ( G `  x ) )  .+^  ( G `  y ) ) )
islfld.w  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
islfld  |-  ( ph  ->  G  e.  F )
Distinct variable groups:    x, r,
y, G    K, r, x, y    x, V, y    W, r, x, y    ph, r, x, y
Allowed substitution hints:    D( x, y, r)    .+ ( x, y, r)    .+^ (
x, y, r)    .x. ( x, y, r)    .X. ( x, y, r)    F( x, y, r)    V( r)    X( x, y, r)

Proof of Theorem islfld
StepHypRef Expression
1 islfld.w . . 3  |-  ( ph  ->  W  e.  X )
2 islfld.u . . . 4  |-  ( ph  ->  G : V --> K )
3 islfld.v . . . . 5  |-  ( ph  ->  V  =  ( Base `  W ) )
4 islfld.k . . . . . 6  |-  ( ph  ->  K  =  ( Base `  D ) )
5 islfld.d . . . . . . 7  |-  ( ph  ->  D  =  (Scalar `  W ) )
65fveq2d 5529 . . . . . 6  |-  ( ph  ->  ( Base `  D
)  =  ( Base `  (Scalar `  W )
) )
74, 6eqtrd 2315 . . . . 5  |-  ( ph  ->  K  =  ( Base `  (Scalar `  W )
) )
83, 7feq23d 5386 . . . 4  |-  ( ph  ->  ( G : V --> K 
<->  G : ( Base `  W ) --> ( Base `  (Scalar `  W )
) ) )
92, 8mpbid 201 . . 3  |-  ( ph  ->  G : ( Base `  W ) --> ( Base `  (Scalar `  W )
) )
10 islfld.l . . . . 5  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( G `  (
( r  .x.  x
)  .+  y )
)  =  ( ( r  .X.  ( G `  x ) )  .+^  ( G `  y ) ) )
1110ralrimivvva 2636 . . . 4  |-  ( ph  ->  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x ) 
.+  y ) )  =  ( ( r 
.X.  ( G `  x ) )  .+^  ( G `  y ) ) )
12 islfld.a . . . . . . . . . 10  |-  ( ph  ->  .+  =  ( +g  `  W ) )
13 islfld.s . . . . . . . . . . 11  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
1413oveqd 5875 . . . . . . . . . 10  |-  ( ph  ->  ( r  .x.  x
)  =  ( r ( .s `  W
) x ) )
15 eqidd 2284 . . . . . . . . . 10  |-  ( ph  ->  y  =  y )
1612, 14, 15oveq123d 5879 . . . . . . . . 9  |-  ( ph  ->  ( ( r  .x.  x )  .+  y
)  =  ( ( r ( .s `  W ) x ) ( +g  `  W
) y ) )
1716fveq2d 5529 . . . . . . . 8  |-  ( ph  ->  ( G `  (
( r  .x.  x
)  .+  y )
)  =  ( G `
 ( ( r ( .s `  W
) x ) ( +g  `  W ) y ) ) )
18 islfld.p . . . . . . . . . 10  |-  ( ph  -> 
.+^  =  ( +g  `  D ) )
195fveq2d 5529 . . . . . . . . . 10  |-  ( ph  ->  ( +g  `  D
)  =  ( +g  `  (Scalar `  W )
) )
2018, 19eqtrd 2315 . . . . . . . . 9  |-  ( ph  -> 
.+^  =  ( +g  `  (Scalar `  W )
) )
21 islfld.t . . . . . . . . . . 11  |-  ( ph  ->  .X.  =  ( .r
`  D ) )
225fveq2d 5529 . . . . . . . . . . 11  |-  ( ph  ->  ( .r `  D
)  =  ( .r
`  (Scalar `  W )
) )
2321, 22eqtrd 2315 . . . . . . . . . 10  |-  ( ph  ->  .X.  =  ( .r
`  (Scalar `  W )
) )
2423oveqd 5875 . . . . . . . . 9  |-  ( ph  ->  ( r  .X.  ( G `  x )
)  =  ( r ( .r `  (Scalar `  W ) ) ( G `  x ) ) )
25 eqidd 2284 . . . . . . . . 9  |-  ( ph  ->  ( G `  y
)  =  ( G `
 y ) )
2620, 24, 25oveq123d 5879 . . . . . . . 8  |-  ( ph  ->  ( ( r  .X.  ( G `  x ) )  .+^  ( G `  y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x ) ) ( +g  `  (Scalar `  W ) ) ( G `  y ) ) )
2717, 26eqeq12d 2297 . . . . . . 7  |-  ( ph  ->  ( ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) )  <->  ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x
) ) ( +g  `  (Scalar `  W )
) ( G `  y ) ) ) )
283, 27raleqbidv 2748 . . . . . 6  |-  ( ph  ->  ( A. y  e.  V  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) )  <->  A. y  e.  ( Base `  W
) ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x
) ) ( +g  `  (Scalar `  W )
) ( G `  y ) ) ) )
293, 28raleqbidv 2748 . . . . 5  |-  ( ph  ->  ( A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) )  <->  A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x
) ) ( +g  `  (Scalar `  W )
) ( G `  y ) ) ) )
307, 29raleqbidv 2748 . . . 4  |-  ( ph  ->  ( A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) )  <->  A. r  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( Base `  W ) A. y  e.  ( Base `  W
) ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x
) ) ( +g  `  (Scalar `  W )
) ( G `  y ) ) ) )
3111, 30mpbid 201 . . 3  |-  ( ph  ->  A. r  e.  (
Base `  (Scalar `  W
) ) A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x
) ) ( +g  `  (Scalar `  W )
) ( G `  y ) ) )
32 eqid 2283 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
33 eqid 2283 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
34 eqid 2283 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
35 eqid 2283 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
36 eqid 2283 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
37 eqid 2283 . . . . 5  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
38 eqid 2283 . . . . 5  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
39 eqid 2283 . . . . 5  |-  (LFnl `  W )  =  (LFnl `  W )
4032, 33, 34, 35, 36, 37, 38, 39islfl 29250 . . . 4  |-  ( W  e.  X  ->  ( G  e.  (LFnl `  W
)  <->  ( G :
( Base `  W ) --> ( Base `  (Scalar `  W
) )  /\  A. r  e.  ( Base `  (Scalar `  W )
) A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x
) ) ( +g  `  (Scalar `  W )
) ( G `  y ) ) ) ) )
4140biimpar 471 . . 3  |-  ( ( W  e.  X  /\  ( G : ( Base `  W ) --> ( Base `  (Scalar `  W )
)  /\  A. r  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( Base `  W ) A. y  e.  ( Base `  W
) ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x
) ) ( +g  `  (Scalar `  W )
) ( G `  y ) ) ) )  ->  G  e.  (LFnl `  W ) )
421, 9, 31, 41syl12anc 1180 . 2  |-  ( ph  ->  G  e.  (LFnl `  W ) )
43 islfld.f . 2  |-  ( ph  ->  F  =  (LFnl `  W ) )
4442, 43eleqtrrd 2360 1  |-  ( ph  ->  G  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   -->wf 5251   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   .rcmulr 13209  Scalarcsca 13211   .scvsca 13212  LFnlclfn 29247
This theorem is referenced by:  lflvscl  29267
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-lfl 29248
  Copyright terms: Public domain W3C validator