MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islidl Unicode version

Theorem islidl 15963
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s  |-  U  =  (LIdeal `  R )
islidl.b  |-  B  =  ( Base `  R
)
islidl.p  |-  .+  =  ( +g  `  R )
islidl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
islidl  |-  ( I  e.  U  <->  ( I  C_  B  /\  I  =/=  (/)  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  ( ( x 
.x.  a )  .+  b )  e.  I
) )
Distinct variable groups:    x, B    I, a, b, x    R, a, b, x
Allowed substitution hints:    B( a, b)    .+ ( x, a, b)    .x. ( x, a, b)    U( x, a, b)

Proof of Theorem islidl
StepHypRef Expression
1 rlmsca2 15953 . 2  |-  (  _I 
`  R )  =  (Scalar `  (ringLMod `  R
) )
2 baseid 13190 . . 3  |-  Base  = Slot  ( Base `  ndx )
3 islidl.b . . 3  |-  B  =  ( Base `  R
)
42, 3strfvi 13186 . 2  |-  B  =  ( Base `  (  _I  `  R ) )
5 rlmbas 15948 . . 3  |-  ( Base `  R )  =  (
Base `  (ringLMod `  R
) )
63, 5eqtri 2303 . 2  |-  B  =  ( Base `  (ringLMod `  R ) )
7 islidl.p . . 3  |-  .+  =  ( +g  `  R )
8 rlmplusg 15949 . . 3  |-  ( +g  `  R )  =  ( +g  `  (ringLMod `  R
) )
97, 8eqtri 2303 . 2  |-  .+  =  ( +g  `  (ringLMod `  R
) )
10 islidl.t . . 3  |-  .x.  =  ( .r `  R )
11 rlmvsca 15954 . . 3  |-  ( .r
`  R )  =  ( .s `  (ringLMod `  R ) )
1210, 11eqtri 2303 . 2  |-  .x.  =  ( .s `  (ringLMod `  R
) )
13 islidl.s . . 3  |-  U  =  (LIdeal `  R )
14 lidlval 15946 . . 3  |-  (LIdeal `  R )  =  (
LSubSp `  (ringLMod `  R
) )
1513, 14eqtri 2303 . 2  |-  U  =  ( LSubSp `  (ringLMod `  R
) )
161, 4, 6, 9, 12, 15islss 15692 1  |-  ( I  e.  U  <->  ( I  C_  B  /\  I  =/=  (/)  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  ( ( x 
.x.  a )  .+  b )  e.  I
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    C_ wss 3152   (/)c0 3455    _I cid 4304   ` cfv 5255  (class class class)co 5858   ndxcnx 13145   Basecbs 13148   +g cplusg 13208   .rcmulr 13209   .scvsca 13212   LSubSpclss 15689  ringLModcrglmod 15922  LIdealclidl 15923
This theorem is referenced by:  hbtlem2  27328
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-sca 13224  df-vsca 13225  df-lss 15690  df-sra 15925  df-rgmod 15926  df-lidl 15927
  Copyright terms: Public domain W3C validator