Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln2 Structured version   Unicode version

Theorem islln2 30245
Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
islln3.b  |-  B  =  ( Base `  K
)
islln3.j  |-  .\/  =  ( join `  K )
islln3.a  |-  A  =  ( Atoms `  K )
islln3.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
islln2  |-  ( K  e.  HL  ->  ( X  e.  N  <->  ( X  e.  B  /\  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  X  =  ( p  .\/  q
) ) ) ) )
Distinct variable groups:    q, p, A    B, p, q    K, p, q    X, p, q
Allowed substitution hints:    .\/ ( q, p)    N( q, p)

Proof of Theorem islln2
StepHypRef Expression
1 islln3.b . . . 4  |-  B  =  ( Base `  K
)
2 islln3.n . . . 4  |-  N  =  ( LLines `  K )
31, 2llnbase 30243 . . 3  |-  ( X  e.  N  ->  X  e.  B )
43pm4.71ri 615 . 2  |-  ( X  e.  N  <->  ( X  e.  B  /\  X  e.  N ) )
5 islln3.j . . . 4  |-  .\/  =  ( join `  K )
6 islln3.a . . . 4  |-  A  =  ( Atoms `  K )
71, 5, 6, 2islln3 30244 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  N  <->  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  X  =  ( p  .\/  q ) ) ) )
87pm5.32da 623 . 2  |-  ( K  e.  HL  ->  (
( X  e.  B  /\  X  e.  N
)  <->  ( X  e.  B  /\  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  X  =  ( p  .\/  q
) ) ) ) )
94, 8syl5bb 249 1  |-  ( K  e.  HL  ->  ( X  e.  N  <->  ( X  e.  B  /\  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  X  =  ( p  .\/  q
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   ` cfv 5446  (class class class)co 6073   Basecbs 13461   joincjn 14393   Atomscatm 29998   HLchlt 30085   LLinesclln 30225
This theorem is referenced by:  islpln5  30269  lplnnlelln  30277  llncvrlpln2  30291  2llnjN  30301  lvolnlelln  30318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232
  Copyright terms: Public domain W3C validator