MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islly Structured version   Unicode version

Theorem islly 17531
Description: The property of being a locally  A topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
islly  |-  ( J  e. Locally  A  <->  ( J  e. 
Top  /\  A. x  e.  J  A. y  e.  x  E. u  e.  ( J  i^i  ~P x ) ( y  e.  u  /\  ( Jt  u )  e.  A
) ) )
Distinct variable groups:    x, u, y, A    u, J, x, y

Proof of Theorem islly
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 ineq1 3535 . . . . 5  |-  ( j  =  J  ->  (
j  i^i  ~P x
)  =  ( J  i^i  ~P x ) )
2 oveq1 6088 . . . . . . 7  |-  ( j  =  J  ->  (
jt  u )  =  ( Jt  u ) )
32eleq1d 2502 . . . . . 6  |-  ( j  =  J  ->  (
( jt  u )  e.  A  <->  ( Jt  u )  e.  A
) )
43anbi2d 685 . . . . 5  |-  ( j  =  J  ->  (
( y  e.  u  /\  ( jt  u )  e.  A
)  <->  ( y  e.  u  /\  ( Jt  u )  e.  A ) ) )
51, 4rexeqbidv 2917 . . . 4  |-  ( j  =  J  ->  ( E. u  e.  (
j  i^i  ~P x
) ( y  e.  u  /\  ( jt  u )  e.  A )  <->  E. u  e.  ( J  i^i  ~P x ) ( y  e.  u  /\  ( Jt  u )  e.  A
) ) )
65ralbidv 2725 . . 3  |-  ( j  =  J  ->  ( A. y  e.  x  E. u  e.  (
j  i^i  ~P x
) ( y  e.  u  /\  ( jt  u )  e.  A )  <->  A. y  e.  x  E. u  e.  ( J  i^i  ~P x ) ( y  e.  u  /\  ( Jt  u )  e.  A
) ) )
76raleqbi1dv 2912 . 2  |-  ( j  =  J  ->  ( A. x  e.  j  A. y  e.  x  E. u  e.  (
j  i^i  ~P x
) ( y  e.  u  /\  ( jt  u )  e.  A )  <->  A. x  e.  J  A. y  e.  x  E. u  e.  ( J  i^i  ~P x ) ( y  e.  u  /\  ( Jt  u )  e.  A
) ) )
8 df-lly 17529 . 2  |- Locally  A  =  { j  e.  Top  | 
A. x  e.  j 
A. y  e.  x  E. u  e.  (
j  i^i  ~P x
) ( y  e.  u  /\  ( jt  u )  e.  A ) }
97, 8elrab2 3094 1  |-  ( J  e. Locally  A  <->  ( J  e. 
Top  /\  A. x  e.  J  A. y  e.  x  E. u  e.  ( J  i^i  ~P x ) ( y  e.  u  /\  ( Jt  u )  e.  A
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706    i^i cin 3319   ~Pcpw 3799  (class class class)co 6081   ↾t crest 13648   Topctop 16958  Locally clly 17527
This theorem is referenced by:  llytop  17535  llyi  17537  llyss  17542  subislly  17544  restnlly  17545  restlly  17546  islly2  17547  llyrest  17548  llyidm  17551  dislly  17560  txlly  17668  cnllyscon  24932  rellyscon  24938
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084  df-lly 17529
  Copyright terms: Public domain W3C validator