MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhm3 Structured version   Unicode version

Theorem islmhm3 16096
Description: Property of a module homomorphism, similar to ismhm 14732. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypotheses
Ref Expression
islmhm.k  |-  K  =  (Scalar `  S )
islmhm.l  |-  L  =  (Scalar `  T )
islmhm.b  |-  B  =  ( Base `  K
)
islmhm.e  |-  E  =  ( Base `  S
)
islmhm.m  |-  .x.  =  ( .s `  S )
islmhm.n  |-  .X.  =  ( .s `  T )
Assertion
Ref Expression
islmhm3  |-  ( ( S  e.  LMod  /\  T  e.  LMod )  ->  ( F  e.  ( S LMHom  T )  <->  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y ) )  =  ( x 
.X.  ( F `  y ) ) ) ) )
Distinct variable groups:    x, B    y, E    x, y, S   
x, F, y    x, T, y
Allowed substitution hints:    B( y)    .x. ( x, y)   
.X. ( x, y)    E( x)    K( x, y)    L( x, y)

Proof of Theorem islmhm3
StepHypRef Expression
1 islmhm.k . . 3  |-  K  =  (Scalar `  S )
2 islmhm.l . . 3  |-  L  =  (Scalar `  T )
3 islmhm.b . . 3  |-  B  =  ( Base `  K
)
4 islmhm.e . . 3  |-  E  =  ( Base `  S
)
5 islmhm.m . . 3  |-  .x.  =  ( .s `  S )
6 islmhm.n . . 3  |-  .X.  =  ( .s `  T )
71, 2, 3, 4, 5, 6islmhm 16095 . 2  |-  ( F  e.  ( S LMHom  T
)  <->  ( ( S  e.  LMod  /\  T  e. 
LMod )  /\  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) ) )
87baib 872 1  |-  ( ( S  e.  LMod  /\  T  e.  LMod )  ->  ( F  e.  ( S LMHom  T )  <->  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y ) )  =  ( x 
.X.  ( F `  y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   ` cfv 5446  (class class class)co 6073   Basecbs 13461  Scalarcsca 13524   .scvsca 13525    GrpHom cghm 14995   LModclmod 15942   LMHom clmhm 16087
This theorem is referenced by:  islmhm2  16106  pj1lmhm  16164
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-lmhm 16090
  Copyright terms: Public domain W3C validator