Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmodfg Structured version   Unicode version

Theorem islmodfg 27135
Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islmodfg.b  |-  B  =  ( Base `  W
)
islmodfg.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
islmodfg  |-  ( W  e.  LMod  ->  ( W  e. LFinGen 
<->  E. b  e.  ~P  B ( b  e. 
Fin  /\  ( N `  b )  =  B ) ) )
Distinct variable groups:    W, b    B, b    N, b

Proof of Theorem islmodfg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 df-lfig 27134 . . . 4  |- LFinGen  =  {
a  e.  LMod  |  (
Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
) }
21eleq2i 2499 . . 3  |-  ( W  e. LFinGen 
<->  W  e.  { a  e.  LMod  |  ( Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
) } )
3 fveq2 5720 . . . . 5  |-  ( a  =  W  ->  ( Base `  a )  =  ( Base `  W
) )
4 fveq2 5720 . . . . . . 7  |-  ( a  =  W  ->  ( LSpan `  a )  =  ( LSpan `  W )
)
5 islmodfg.n . . . . . . 7  |-  N  =  ( LSpan `  W )
64, 5syl6eqr 2485 . . . . . 6  |-  ( a  =  W  ->  ( LSpan `  a )  =  N )
73pweqd 3796 . . . . . . 7  |-  ( a  =  W  ->  ~P ( Base `  a )  =  ~P ( Base `  W
) )
87ineq1d 3533 . . . . . 6  |-  ( a  =  W  ->  ( ~P ( Base `  a
)  i^i  Fin )  =  ( ~P ( Base `  W )  i^i 
Fin ) )
96, 8imaeq12d 5196 . . . . 5  |-  ( a  =  W  ->  (
( LSpan `  a ) " ( ~P ( Base `  a )  i^i 
Fin ) )  =  ( N " ( ~P ( Base `  W
)  i^i  Fin )
) )
103, 9eleq12d 2503 . . . 4  |-  ( a  =  W  ->  (
( Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
)  <->  ( Base `  W
)  e.  ( N
" ( ~P ( Base `  W )  i^i 
Fin ) ) ) )
1110elrab3 3085 . . 3  |-  ( W  e.  LMod  ->  ( W  e.  { a  e. 
LMod  |  ( Base `  a )  e.  ( ( LSpan `  a ) " ( ~P ( Base `  a )  i^i 
Fin ) ) }  <-> 
( Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
) ) )
122, 11syl5bb 249 . 2  |-  ( W  e.  LMod  ->  ( W  e. LFinGen 
<->  ( Base `  W
)  e.  ( N
" ( ~P ( Base `  W )  i^i 
Fin ) ) ) )
13 eqid 2435 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
14 eqid 2435 . . . . . 6  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
1513, 14, 5lspf 16042 . . . . 5  |-  ( W  e.  LMod  ->  N : ~P ( Base `  W
) --> ( LSubSp `  W
) )
16 ffn 5583 . . . . 5  |-  ( N : ~P ( Base `  W ) --> ( LSubSp `  W )  ->  N  Fn  ~P ( Base `  W
) )
1715, 16syl 16 . . . 4  |-  ( W  e.  LMod  ->  N  Fn  ~P ( Base `  W
) )
18 inss1 3553 . . . 4  |-  ( ~P ( Base `  W
)  i^i  Fin )  C_ 
~P ( Base `  W
)
19 fvelimab 5774 . . . 4  |-  ( ( N  Fn  ~P ( Base `  W )  /\  ( ~P ( Base `  W
)  i^i  Fin )  C_ 
~P ( Base `  W
) )  ->  (
( Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
)  <->  E. b  e.  ( ~P ( Base `  W
)  i^i  Fin )
( N `  b
)  =  ( Base `  W ) ) )
2017, 18, 19sylancl 644 . . 3  |-  ( W  e.  LMod  ->  ( (
Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
)  <->  E. b  e.  ( ~P ( Base `  W
)  i^i  Fin )
( N `  b
)  =  ( Base `  W ) ) )
21 elin 3522 . . . . . . 7  |-  ( b  e.  ( ~P ( Base `  W )  i^i 
Fin )  <->  ( b  e.  ~P ( Base `  W
)  /\  b  e.  Fin ) )
22 islmodfg.b . . . . . . . . . . 11  |-  B  =  ( Base `  W
)
2322eqcomi 2439 . . . . . . . . . 10  |-  ( Base `  W )  =  B
2423pweqi 3795 . . . . . . . . 9  |-  ~P ( Base `  W )  =  ~P B
2524eleq2i 2499 . . . . . . . 8  |-  ( b  e.  ~P ( Base `  W )  <->  b  e.  ~P B )
2625anbi1i 677 . . . . . . 7  |-  ( ( b  e.  ~P ( Base `  W )  /\  b  e.  Fin )  <->  ( b  e.  ~P B  /\  b  e.  Fin ) )
2721, 26bitri 241 . . . . . 6  |-  ( b  e.  ( ~P ( Base `  W )  i^i 
Fin )  <->  ( b  e.  ~P B  /\  b  e.  Fin ) )
2823eqeq2i 2445 . . . . . 6  |-  ( ( N `  b )  =  ( Base `  W
)  <->  ( N `  b )  =  B )
2927, 28anbi12i 679 . . . . 5  |-  ( ( b  e.  ( ~P ( Base `  W
)  i^i  Fin )  /\  ( N `  b
)  =  ( Base `  W ) )  <->  ( (
b  e.  ~P B  /\  b  e.  Fin )  /\  ( N `  b )  =  B ) )
30 anass 631 . . . . 5  |-  ( ( ( b  e.  ~P B  /\  b  e.  Fin )  /\  ( N `  b )  =  B )  <->  ( b  e. 
~P B  /\  (
b  e.  Fin  /\  ( N `  b )  =  B ) ) )
3129, 30bitri 241 . . . 4  |-  ( ( b  e.  ( ~P ( Base `  W
)  i^i  Fin )  /\  ( N `  b
)  =  ( Base `  W ) )  <->  ( b  e.  ~P B  /\  (
b  e.  Fin  /\  ( N `  b )  =  B ) ) )
3231rexbii2 2726 . . 3  |-  ( E. b  e.  ( ~P ( Base `  W
)  i^i  Fin )
( N `  b
)  =  ( Base `  W )  <->  E. b  e.  ~P  B ( b  e.  Fin  /\  ( N `  b )  =  B ) )
3320, 32syl6bb 253 . 2  |-  ( W  e.  LMod  ->  ( (
Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
)  <->  E. b  e.  ~P  B ( b  e. 
Fin  /\  ( N `  b )  =  B ) ) )
3412, 33bitrd 245 1  |-  ( W  e.  LMod  ->  ( W  e. LFinGen 
<->  E. b  e.  ~P  B ( b  e. 
Fin  /\  ( N `  b )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698   {crab 2701    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   "cima 4873    Fn wfn 5441   -->wf 5442   ` cfv 5446   Fincfn 7101   Basecbs 13461   LModclmod 15942   LSubSpclss 16000   LSpanclspn 16039  LFinGenclfig 27133
This theorem is referenced by:  islssfg  27136  lnrfg  27291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-plusg 13534  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mgp 15641  df-rng 15655  df-ur 15657  df-lmod 15944  df-lss 16001  df-lsp 16040  df-lfig 27134
  Copyright terms: Public domain W3C validator