Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmodfg Unicode version

Theorem islmodfg 27167
Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islmodfg.b  |-  B  =  ( Base `  W
)
islmodfg.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
islmodfg  |-  ( W  e.  LMod  ->  ( W  e. LFinGen 
<->  E. b  e.  ~P  B ( b  e. 
Fin  /\  ( N `  b )  =  B ) ) )
Distinct variable groups:    W, b    B, b    N, b

Proof of Theorem islmodfg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 df-lfig 27166 . . . 4  |- LFinGen  =  {
a  e.  LMod  |  (
Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
) }
21eleq2i 2347 . . 3  |-  ( W  e. LFinGen 
<->  W  e.  { a  e.  LMod  |  ( Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
) } )
3 fveq2 5525 . . . . 5  |-  ( a  =  W  ->  ( Base `  a )  =  ( Base `  W
) )
4 fveq2 5525 . . . . . . . 8  |-  ( a  =  W  ->  ( LSpan `  a )  =  ( LSpan `  W )
)
5 islmodfg.n . . . . . . . 8  |-  N  =  ( LSpan `  W )
64, 5syl6eqr 2333 . . . . . . 7  |-  ( a  =  W  ->  ( LSpan `  a )  =  N )
76imaeq1d 5011 . . . . . 6  |-  ( a  =  W  ->  (
( LSpan `  a ) " ( ~P ( Base `  a )  i^i 
Fin ) )  =  ( N " ( ~P ( Base `  a
)  i^i  Fin )
) )
83pweqd 3630 . . . . . . . 8  |-  ( a  =  W  ->  ~P ( Base `  a )  =  ~P ( Base `  W
) )
98ineq1d 3369 . . . . . . 7  |-  ( a  =  W  ->  ( ~P ( Base `  a
)  i^i  Fin )  =  ( ~P ( Base `  W )  i^i 
Fin ) )
109imaeq2d 5012 . . . . . 6  |-  ( a  =  W  ->  ( N " ( ~P ( Base `  a )  i^i 
Fin ) )  =  ( N " ( ~P ( Base `  W
)  i^i  Fin )
) )
117, 10eqtrd 2315 . . . . 5  |-  ( a  =  W  ->  (
( LSpan `  a ) " ( ~P ( Base `  a )  i^i 
Fin ) )  =  ( N " ( ~P ( Base `  W
)  i^i  Fin )
) )
123, 11eleq12d 2351 . . . 4  |-  ( a  =  W  ->  (
( Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
)  <->  ( Base `  W
)  e.  ( N
" ( ~P ( Base `  W )  i^i 
Fin ) ) ) )
1312elrab3 2924 . . 3  |-  ( W  e.  LMod  ->  ( W  e.  { a  e. 
LMod  |  ( Base `  a )  e.  ( ( LSpan `  a ) " ( ~P ( Base `  a )  i^i 
Fin ) ) }  <-> 
( Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
) ) )
142, 13syl5bb 248 . 2  |-  ( W  e.  LMod  ->  ( W  e. LFinGen 
<->  ( Base `  W
)  e.  ( N
" ( ~P ( Base `  W )  i^i 
Fin ) ) ) )
15 eqid 2283 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
16 eqid 2283 . . . . . 6  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
1715, 16, 5lspf 15731 . . . . 5  |-  ( W  e.  LMod  ->  N : ~P ( Base `  W
) --> ( LSubSp `  W
) )
18 ffn 5389 . . . . 5  |-  ( N : ~P ( Base `  W ) --> ( LSubSp `  W )  ->  N  Fn  ~P ( Base `  W
) )
1917, 18syl 15 . . . 4  |-  ( W  e.  LMod  ->  N  Fn  ~P ( Base `  W
) )
20 inss1 3389 . . . 4  |-  ( ~P ( Base `  W
)  i^i  Fin )  C_ 
~P ( Base `  W
)
21 fvelimab 5578 . . . 4  |-  ( ( N  Fn  ~P ( Base `  W )  /\  ( ~P ( Base `  W
)  i^i  Fin )  C_ 
~P ( Base `  W
) )  ->  (
( Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
)  <->  E. b  e.  ( ~P ( Base `  W
)  i^i  Fin )
( N `  b
)  =  ( Base `  W ) ) )
2219, 20, 21sylancl 643 . . 3  |-  ( W  e.  LMod  ->  ( (
Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
)  <->  E. b  e.  ( ~P ( Base `  W
)  i^i  Fin )
( N `  b
)  =  ( Base `  W ) ) )
23 elin 3358 . . . . . . 7  |-  ( b  e.  ( ~P ( Base `  W )  i^i 
Fin )  <->  ( b  e.  ~P ( Base `  W
)  /\  b  e.  Fin ) )
24 islmodfg.b . . . . . . . . . . 11  |-  B  =  ( Base `  W
)
2524eqcomi 2287 . . . . . . . . . 10  |-  ( Base `  W )  =  B
2625pweqi 3629 . . . . . . . . 9  |-  ~P ( Base `  W )  =  ~P B
2726eleq2i 2347 . . . . . . . 8  |-  ( b  e.  ~P ( Base `  W )  <->  b  e.  ~P B )
2827anbi1i 676 . . . . . . 7  |-  ( ( b  e.  ~P ( Base `  W )  /\  b  e.  Fin )  <->  ( b  e.  ~P B  /\  b  e.  Fin ) )
2923, 28bitri 240 . . . . . 6  |-  ( b  e.  ( ~P ( Base `  W )  i^i 
Fin )  <->  ( b  e.  ~P B  /\  b  e.  Fin ) )
3025eqeq2i 2293 . . . . . 6  |-  ( ( N `  b )  =  ( Base `  W
)  <->  ( N `  b )  =  B )
3129, 30anbi12i 678 . . . . 5  |-  ( ( b  e.  ( ~P ( Base `  W
)  i^i  Fin )  /\  ( N `  b
)  =  ( Base `  W ) )  <->  ( (
b  e.  ~P B  /\  b  e.  Fin )  /\  ( N `  b )  =  B ) )
32 anass 630 . . . . 5  |-  ( ( ( b  e.  ~P B  /\  b  e.  Fin )  /\  ( N `  b )  =  B )  <->  ( b  e. 
~P B  /\  (
b  e.  Fin  /\  ( N `  b )  =  B ) ) )
3331, 32bitri 240 . . . 4  |-  ( ( b  e.  ( ~P ( Base `  W
)  i^i  Fin )  /\  ( N `  b
)  =  ( Base `  W ) )  <->  ( b  e.  ~P B  /\  (
b  e.  Fin  /\  ( N `  b )  =  B ) ) )
3433rexbii2 2572 . . 3  |-  ( E. b  e.  ( ~P ( Base `  W
)  i^i  Fin )
( N `  b
)  =  ( Base `  W )  <->  E. b  e.  ~P  B ( b  e.  Fin  /\  ( N `  b )  =  B ) )
3522, 34syl6bb 252 . 2  |-  ( W  e.  LMod  ->  ( (
Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
)  <->  E. b  e.  ~P  B ( b  e. 
Fin  /\  ( N `  b )  =  B ) ) )
3614, 35bitrd 244 1  |-  ( W  e.  LMod  ->  ( W  e. LFinGen 
<->  E. b  e.  ~P  B ( b  e. 
Fin  /\  ( N `  b )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255   Fincfn 6863   Basecbs 13148   LModclmod 15627   LSubSpclss 15689   LSpanclspn 15728  LFinGenclfig 27165
This theorem is referenced by:  islssfg  27168  lnrfg  27323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lfig 27166
  Copyright terms: Public domain W3C validator