MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islno Unicode version

Theorem islno 21347
Description: The predicate "is a linear operator." (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1  |-  X  =  ( BaseSet `  U )
lnoval.2  |-  Y  =  ( BaseSet `  W )
lnoval.3  |-  G  =  ( +v `  U
)
lnoval.4  |-  H  =  ( +v `  W
)
lnoval.5  |-  R  =  ( .s OLD `  U
)
lnoval.6  |-  S  =  ( .s OLD `  W
)
lnoval.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
islno  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  L  <->  ( T : X --> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) ) )
Distinct variable groups:    x, y,
z, U    x, W, y, z    y, X, z   
x, T, y, z
Allowed substitution hints:    R( x, y, z)    S( x, y, z)    G( x, y, z)    H( x, y, z)    L( x, y, z)    X( x)    Y( x, y, z)

Proof of Theorem islno
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lnoval.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 lnoval.2 . . . 4  |-  Y  =  ( BaseSet `  W )
3 lnoval.3 . . . 4  |-  G  =  ( +v `  U
)
4 lnoval.4 . . . 4  |-  H  =  ( +v `  W
)
5 lnoval.5 . . . 4  |-  R  =  ( .s OLD `  U
)
6 lnoval.6 . . . 4  |-  S  =  ( .s OLD `  W
)
7 lnoval.7 . . . 4  |-  L  =  ( U  LnOp  W
)
81, 2, 3, 4, 5, 6, 7lnoval 21346 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  L  =  { w  e.  ( Y  ^m  X )  |  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( w `  ( ( x R y ) G z ) )  =  ( ( x S ( w `  y ) ) H ( w `
 z ) ) } )
98eleq2d 2363 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  L  <->  T  e.  { w  e.  ( Y  ^m  X )  | 
A. x  e.  CC  A. y  e.  X  A. z  e.  X  (
w `  ( (
x R y ) G z ) )  =  ( ( x S ( w `  y ) ) H ( w `  z
) ) } ) )
10 fveq1 5540 . . . . . . 7  |-  ( w  =  T  ->  (
w `  ( (
x R y ) G z ) )  =  ( T `  ( ( x R y ) G z ) ) )
11 fveq1 5540 . . . . . . . . 9  |-  ( w  =  T  ->  (
w `  y )  =  ( T `  y ) )
1211oveq2d 5890 . . . . . . . 8  |-  ( w  =  T  ->  (
x S ( w `
 y ) )  =  ( x S ( T `  y
) ) )
13 fveq1 5540 . . . . . . . 8  |-  ( w  =  T  ->  (
w `  z )  =  ( T `  z ) )
1412, 13oveq12d 5892 . . . . . . 7  |-  ( w  =  T  ->  (
( x S ( w `  y ) ) H ( w `
 z ) )  =  ( ( x S ( T `  y ) ) H ( T `  z
) ) )
1510, 14eqeq12d 2310 . . . . . 6  |-  ( w  =  T  ->  (
( w `  (
( x R y ) G z ) )  =  ( ( x S ( w `
 y ) ) H ( w `  z ) )  <->  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
16152ralbidv 2598 . . . . 5  |-  ( w  =  T  ->  ( A. y  e.  X  A. z  e.  X  ( w `  (
( x R y ) G z ) )  =  ( ( x S ( w `
 y ) ) H ( w `  z ) )  <->  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
1716ralbidv 2576 . . . 4  |-  ( w  =  T  ->  ( A. x  e.  CC  A. y  e.  X  A. z  e.  X  (
w `  ( (
x R y ) G z ) )  =  ( ( x S ( w `  y ) ) H ( w `  z
) )  <->  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
1817elrab 2936 . . 3  |-  ( T  e.  { w  e.  ( Y  ^m  X
)  |  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( w `  ( ( x R y ) G z ) )  =  ( ( x S ( w `  y ) ) H ( w `
 z ) ) }  <->  ( T  e.  ( Y  ^m  X
)  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
19 fvex 5555 . . . . . 6  |-  ( BaseSet `  W )  e.  _V
202, 19eqeltri 2366 . . . . 5  |-  Y  e. 
_V
21 fvex 5555 . . . . . 6  |-  ( BaseSet `  U )  e.  _V
221, 21eqeltri 2366 . . . . 5  |-  X  e. 
_V
2320, 22elmap 6812 . . . 4  |-  ( T  e.  ( Y  ^m  X )  <->  T : X
--> Y )
2423anbi1i 676 . . 3  |-  ( ( T  e.  ( Y  ^m  X )  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( (
x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `  z
) ) )  <->  ( T : X --> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
2518, 24bitri 240 . 2  |-  ( T  e.  { w  e.  ( Y  ^m  X
)  |  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( w `  ( ( x R y ) G z ) )  =  ( ( x S ( w `  y ) ) H ( w `
 z ) ) }  <->  ( T : X
--> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
269, 25syl6bb 252 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  L  <->  ( T : X --> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   _Vcvv 2801   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   CCcc 8751   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159    LnOp clno 21334
This theorem is referenced by:  lnolin  21348  lnof  21349  lnocoi  21351  0lno  21384  ipblnfi  21450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-lno 21338
  Copyright terms: Public domain W3C validator