MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islno Structured version   Unicode version

Theorem islno 22246
Description: The predicate "is a linear operator." (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1  |-  X  =  ( BaseSet `  U )
lnoval.2  |-  Y  =  ( BaseSet `  W )
lnoval.3  |-  G  =  ( +v `  U
)
lnoval.4  |-  H  =  ( +v `  W
)
lnoval.5  |-  R  =  ( .s OLD `  U
)
lnoval.6  |-  S  =  ( .s OLD `  W
)
lnoval.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
islno  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  L  <->  ( T : X --> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) ) )
Distinct variable groups:    x, y,
z, U    x, W, y, z    y, X, z   
x, T, y, z
Allowed substitution hints:    R( x, y, z)    S( x, y, z)    G( x, y, z)    H( x, y, z)    L( x, y, z)    X( x)    Y( x, y, z)

Proof of Theorem islno
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lnoval.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 lnoval.2 . . . 4  |-  Y  =  ( BaseSet `  W )
3 lnoval.3 . . . 4  |-  G  =  ( +v `  U
)
4 lnoval.4 . . . 4  |-  H  =  ( +v `  W
)
5 lnoval.5 . . . 4  |-  R  =  ( .s OLD `  U
)
6 lnoval.6 . . . 4  |-  S  =  ( .s OLD `  W
)
7 lnoval.7 . . . 4  |-  L  =  ( U  LnOp  W
)
81, 2, 3, 4, 5, 6, 7lnoval 22245 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  L  =  { w  e.  ( Y  ^m  X )  |  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( w `  ( ( x R y ) G z ) )  =  ( ( x S ( w `  y ) ) H ( w `
 z ) ) } )
98eleq2d 2502 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  L  <->  T  e.  { w  e.  ( Y  ^m  X )  | 
A. x  e.  CC  A. y  e.  X  A. z  e.  X  (
w `  ( (
x R y ) G z ) )  =  ( ( x S ( w `  y ) ) H ( w `  z
) ) } ) )
10 fveq1 5719 . . . . . . 7  |-  ( w  =  T  ->  (
w `  ( (
x R y ) G z ) )  =  ( T `  ( ( x R y ) G z ) ) )
11 fveq1 5719 . . . . . . . . 9  |-  ( w  =  T  ->  (
w `  y )  =  ( T `  y ) )
1211oveq2d 6089 . . . . . . . 8  |-  ( w  =  T  ->  (
x S ( w `
 y ) )  =  ( x S ( T `  y
) ) )
13 fveq1 5719 . . . . . . . 8  |-  ( w  =  T  ->  (
w `  z )  =  ( T `  z ) )
1412, 13oveq12d 6091 . . . . . . 7  |-  ( w  =  T  ->  (
( x S ( w `  y ) ) H ( w `
 z ) )  =  ( ( x S ( T `  y ) ) H ( T `  z
) ) )
1510, 14eqeq12d 2449 . . . . . 6  |-  ( w  =  T  ->  (
( w `  (
( x R y ) G z ) )  =  ( ( x S ( w `
 y ) ) H ( w `  z ) )  <->  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
16152ralbidv 2739 . . . . 5  |-  ( w  =  T  ->  ( A. y  e.  X  A. z  e.  X  ( w `  (
( x R y ) G z ) )  =  ( ( x S ( w `
 y ) ) H ( w `  z ) )  <->  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
1716ralbidv 2717 . . . 4  |-  ( w  =  T  ->  ( A. x  e.  CC  A. y  e.  X  A. z  e.  X  (
w `  ( (
x R y ) G z ) )  =  ( ( x S ( w `  y ) ) H ( w `  z
) )  <->  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
1817elrab 3084 . . 3  |-  ( T  e.  { w  e.  ( Y  ^m  X
)  |  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( w `  ( ( x R y ) G z ) )  =  ( ( x S ( w `  y ) ) H ( w `
 z ) ) }  <->  ( T  e.  ( Y  ^m  X
)  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
19 fvex 5734 . . . . . 6  |-  ( BaseSet `  W )  e.  _V
202, 19eqeltri 2505 . . . . 5  |-  Y  e. 
_V
21 fvex 5734 . . . . . 6  |-  ( BaseSet `  U )  e.  _V
221, 21eqeltri 2505 . . . . 5  |-  X  e. 
_V
2320, 22elmap 7034 . . . 4  |-  ( T  e.  ( Y  ^m  X )  <->  T : X
--> Y )
2423anbi1i 677 . . 3  |-  ( ( T  e.  ( Y  ^m  X )  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( (
x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `  z
) ) )  <->  ( T : X --> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
2518, 24bitri 241 . 2  |-  ( T  e.  { w  e.  ( Y  ^m  X
)  |  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( w `  ( ( x R y ) G z ) )  =  ( ( x S ( w `  y ) ) H ( w `
 z ) ) }  <->  ( T : X
--> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) )
269, 25syl6bb 253 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  L  <->  ( T : X --> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x R y ) G z ) )  =  ( ( x S ( T `  y ) ) H ( T `
 z ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701   _Vcvv 2948   -->wf 5442   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   CCcc 8980   NrmCVeccnv 22055   +vcpv 22056   BaseSetcba 22057   .s
OLDcns 22058    LnOp clno 22233
This theorem is referenced by:  lnolin  22247  lnof  22248  lnocoi  22250  0lno  22283  ipblnfi  22349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-map 7012  df-lno 22237
  Copyright terms: Public domain W3C validator