Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islocfin Structured version   Unicode version

Theorem islocfin 26390
Description: The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
islocfin.1  |-  X  = 
U. J
islocfin.2  |-  Y  = 
U. A
Assertion
Ref Expression
islocfin  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
Distinct variable groups:    n, s, x, A    n, J, x   
x, X
Allowed substitution hints:    J( s)    X( n, s)    Y( x, n, s)

Proof of Theorem islocfin
Dummy variables  j 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-locfin 26360 . . . . 5  |-  LocFin  =  ( j  e.  Top  |->  { y  |  ( U. j  =  U. y  /\  A. x  e.  U. j E. n  e.  j  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
21dmmptss 5369 . . . 4  |-  dom  LocFin  C_  Top
3 elfvdm 5760 . . . 4  |-  ( A  e.  ( LocFin `  J
)  ->  J  e.  dom  LocFin )
42, 3sseldi 3348 . . 3  |-  ( A  e.  ( LocFin `  J
)  ->  J  e.  Top )
5 eqimss2 3403 . . . . . . . . . . 11  |-  ( X  =  U. y  ->  U. y  C_  X )
6 sspwuni 4179 . . . . . . . . . . 11  |-  ( y 
C_  ~P X  <->  U. y  C_  X )
75, 6sylibr 205 . . . . . . . . . 10  |-  ( X  =  U. y  -> 
y  C_  ~P X
)
8 vex 2961 . . . . . . . . . . 11  |-  y  e. 
_V
98elpw 3807 . . . . . . . . . 10  |-  ( y  e.  ~P ~P X  <->  y 
C_  ~P X )
107, 9sylibr 205 . . . . . . . . 9  |-  ( X  =  U. y  -> 
y  e.  ~P ~P X )
1110adantr 453 . . . . . . . 8  |-  ( ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  ->  y  e.  ~P ~P X )
1211abssi 3420 . . . . . . 7  |-  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  C_  ~P ~P X
13 islocfin.1 . . . . . . . . 9  |-  X  = 
U. J
1413topopn 16984 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  J )
15 pwexg 4386 . . . . . . . 8  |-  ( X  e.  J  ->  ~P X  e.  _V )
16 pwexg 4386 . . . . . . . 8  |-  ( ~P X  e.  _V  ->  ~P ~P X  e.  _V )
1714, 15, 163syl 19 . . . . . . 7  |-  ( J  e.  Top  ->  ~P ~P X  e.  _V )
18 ssexg 4352 . . . . . . 7  |-  ( ( { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  C_  ~P ~P X  /\  ~P ~P X  e.  _V )  ->  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  e.  _V )
1912, 17, 18sylancr 646 . . . . . 6  |-  ( J  e.  Top  ->  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  e.  _V )
20 unieq 4026 . . . . . . . . . . 11  |-  ( j  =  J  ->  U. j  =  U. J )
2120, 13syl6eqr 2488 . . . . . . . . . 10  |-  ( j  =  J  ->  U. j  =  X )
2221eqeq1d 2446 . . . . . . . . 9  |-  ( j  =  J  ->  ( U. j  =  U. y 
<->  X  =  U. y
) )
23 rexeq 2907 . . . . . . . . . 10  |-  ( j  =  J  ->  ( E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
2421, 23raleqbidv 2918 . . . . . . . . 9  |-  ( j  =  J  ->  ( A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
2522, 24anbi12d 693 . . . . . . . 8  |-  ( j  =  J  ->  (
( U. j  = 
U. y  /\  A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  <->  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) ) )
2625abbidv 2552 . . . . . . 7  |-  ( j  =  J  ->  { y  |  ( U. j  =  U. y  /\  A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  =  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
2726, 1fvmptg 5807 . . . . . 6  |-  ( ( J  e.  Top  /\  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  e.  _V )  ->  ( LocFin `  J )  =  {
y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } )
2819, 27mpdan 651 . . . . 5  |-  ( J  e.  Top  ->  ( LocFin `
 J )  =  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
2928eleq2d 2505 . . . 4  |-  ( J  e.  Top  ->  ( A  e.  ( LocFin `  J )  <->  A  e.  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } ) )
30 elex 2966 . . . . . 6  |-  ( A  e.  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  ->  A  e.  _V )
3130adantl 454 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } )  ->  A  e.  _V )
32 simpr 449 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  =  Y )
33 islocfin.2 . . . . . . . . . 10  |-  Y  = 
U. A
3432, 33syl6eq 2486 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  =  U. A
)
3514adantr 453 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  e.  J )
3634, 35eqeltrrd 2513 . . . . . . . 8  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  U. A  e.  J
)
37 elex 2966 . . . . . . . 8  |-  ( U. A  e.  J  ->  U. A  e.  _V )
3836, 37syl 16 . . . . . . 7  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  U. A  e.  _V )
39 uniexb 4755 . . . . . . 7  |-  ( A  e.  _V  <->  U. A  e. 
_V )
4038, 39sylibr 205 . . . . . 6  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  A  e.  _V )
4140adantrr 699 . . . . 5  |-  ( ( J  e.  Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )  ->  A  e.  _V )
42 unieq 4026 . . . . . . . . 9  |-  ( y  =  A  ->  U. y  =  U. A )
4342, 33syl6eqr 2488 . . . . . . . 8  |-  ( y  =  A  ->  U. y  =  Y )
4443eqeq2d 2449 . . . . . . 7  |-  ( y  =  A  ->  ( X  =  U. y  <->  X  =  Y ) )
45 rabeq 2952 . . . . . . . . . . 11  |-  ( y  =  A  ->  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  =  {
s  e.  A  | 
( s  i^i  n
)  =/=  (/) } )
4645eleq1d 2504 . . . . . . . . . 10  |-  ( y  =  A  ->  ( { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin 
<->  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
4746anbi2d 686 . . . . . . . . 9  |-  ( y  =  A  ->  (
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4847rexbidv 2728 . . . . . . . 8  |-  ( y  =  A  ->  ( E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4948ralbidv 2727 . . . . . . 7  |-  ( y  =  A  ->  ( A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
5044, 49anbi12d 693 . . . . . 6  |-  ( y  =  A  ->  (
( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5150elabg 3085 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5231, 41, 51pm5.21nd 870 . . . 4  |-  ( J  e.  Top  ->  ( A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5329, 52bitrd 246 . . 3  |-  ( J  e.  Top  ->  ( A  e.  ( LocFin `  J )  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
544, 53biadan2 625 . 2  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
55 3anass 941 . 2  |-  ( ( J  e.  Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin ) )  <->  ( J  e.  Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) ) )
5654, 55bitr4i 245 1  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   {cab 2424    =/= wne 2601   A.wral 2707   E.wrex 2708   {crab 2711   _Vcvv 2958    i^i cin 3321    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   U.cuni 4017   dom cdm 4881   ` cfv 5457   Fincfn 7112   Topctop 16963   LocFinclocfin 26356
This theorem is referenced by:  finlocfin  26393  locfintop  26394  locfinbas  26395  locfinnei  26396  locfindis  26399  locfincf  26400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fv 5465  df-top 16968  df-locfin 26360
  Copyright terms: Public domain W3C validator