MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islp2 Structured version   Unicode version

Theorem islp2 17214
Description: The predicate " P is a limit point of  S," in terms of neighborhoods. Definition of limit point in [Munkres] p. 97. Although Munkres uses open neighborhoods, it also works for our more general neighborhoods. (Contributed by NM, 26-Feb-2007.) (Proof shortened by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
islp2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( limPt `  J ) `  S )  <->  A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  ( S  \  { P } ) )  =/=  (/) ) )
Distinct variable groups:    n, J    P, n    S, n    n, X

Proof of Theorem islp2
StepHypRef Expression
1 lpfval.1 . . . 4  |-  X  = 
U. J
21islp 17209 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( limPt `  J ) `  S )  <->  P  e.  ( ( cls `  J
) `  ( S  \  { P } ) ) ) )
323adant3 978 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( limPt `  J ) `  S )  <->  P  e.  ( ( cls `  J
) `  ( S  \  { P } ) ) ) )
4 ssdifss 3480 . . 3  |-  ( S 
C_  X  ->  ( S  \  { P }
)  C_  X )
51neindisj2 17192 . . 3  |-  ( ( J  e.  Top  /\  ( S  \  { P } )  C_  X  /\  P  e.  X
)  ->  ( P  e.  ( ( cls `  J
) `  ( S  \  { P } ) )  <->  A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  ( S  \  { P } ) )  =/=  (/) ) )
64, 5syl3an2 1219 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J ) `  ( S  \  { P } ) )  <->  A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  ( S  \  { P } ) )  =/=  (/) ) )
73, 6bitrd 246 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( limPt `  J ) `  S )  <->  A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  ( S  \  { P } ) )  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707    \ cdif 3319    i^i cin 3321    C_ wss 3322   (/)c0 3630   {csn 3816   U.cuni 4017   ` cfv 5457   Topctop 16963   clsccl 17087   neicnei 17166   limPtclp 17203
This theorem is referenced by:  clslp  17217  lpbl  18538  reperflem  18854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-top 16968  df-cld 17088  df-ntr 17089  df-cls 17090  df-nei 17167  df-lp 17205
  Copyright terms: Public domain W3C validator