Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln3 Unicode version

Theorem islpln3 29722
Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
islpln3.b  |-  B  =  ( Base `  K
)
islpln3.l  |-  .<_  =  ( le `  K )
islpln3.j  |-  .\/  =  ( join `  K )
islpln3.a  |-  A  =  ( Atoms `  K )
islpln3.n  |-  N  =  ( LLines `  K )
islpln3.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
islpln3  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  P  <->  E. y  e.  N  E. p  e.  A  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p ) ) ) )
Distinct variable groups:    A, p    y, p, B    K, p, y   
.<_ , p    N, p, y    X, p, y
Allowed substitution hints:    A( y)    P( y, p)    .\/ ( y, p)    .<_ ( y)

Proof of Theorem islpln3
StepHypRef Expression
1 islpln3.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2283 . . 3  |-  (  <o  `  K )  =  ( 
<o  `  K )
3 islpln3.n . . 3  |-  N  =  ( LLines `  K )
4 islpln3.p . . 3  |-  P  =  ( LPlanes `  K )
51, 2, 3, 4islpln4 29720 . 2  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  P  <->  E. y  e.  N  y (  <o  `  K ) X ) )
6 simpll 730 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  K  e.  HL )
71, 3llnbase 29698 . . . . . 6  |-  ( y  e.  N  ->  y  e.  B )
87adantl 452 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  y  e.  B )
9 simplr 731 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  X  e.  B )
10 islpln3.l . . . . . 6  |-  .<_  =  ( le `  K )
11 islpln3.j . . . . . 6  |-  .\/  =  ( join `  K )
12 islpln3.a . . . . . 6  |-  A  =  ( Atoms `  K )
131, 10, 11, 2, 12cvrval3 29602 . . . . 5  |-  ( ( K  e.  HL  /\  y  e.  B  /\  X  e.  B )  ->  ( y (  <o  `  K ) X  <->  E. p  e.  A  ( -.  p  .<_  y  /\  (
y  .\/  p )  =  X ) ) )
146, 8, 9, 13syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  ( y
(  <o  `  K ) X 
<->  E. p  e.  A  ( -.  p  .<_  y  /\  ( y  .\/  p )  =  X ) ) )
15 eqcom 2285 . . . . . . 7  |-  ( ( y  .\/  p )  =  X  <->  X  =  ( y  .\/  p
) )
1615a1i 10 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N )  /\  p  e.  A )  ->  (
( y  .\/  p
)  =  X  <->  X  =  ( y  .\/  p
) ) )
1716anbi2d 684 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N )  /\  p  e.  A )  ->  (
( -.  p  .<_  y  /\  ( y  .\/  p )  =  X )  <->  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p
) ) ) )
1817rexbidva 2560 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  ( E. p  e.  A  ( -.  p  .<_  y  /\  ( y  .\/  p
)  =  X )  <->  E. p  e.  A  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p ) ) ) )
1914, 18bitrd 244 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  ( y
(  <o  `  K ) X 
<->  E. p  e.  A  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p ) ) ) )
2019rexbidva 2560 . 2  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. y  e.  N  y (  <o  `  K ) X  <->  E. y  e.  N  E. p  e.  A  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p ) ) ) )
215, 20bitrd 244 1  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  P  <->  E. y  e.  N  E. p  e.  A  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078    <o ccvr 29452   Atomscatm 29453   HLchlt 29540   LLinesclln 29680   LPlanesclpl 29681
This theorem is referenced by:  islpln5  29724  lplnexllnN  29753
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688
  Copyright terms: Public domain W3C validator