Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln3 Structured version   Unicode version

Theorem islpln3 30428
Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
islpln3.b  |-  B  =  ( Base `  K
)
islpln3.l  |-  .<_  =  ( le `  K )
islpln3.j  |-  .\/  =  ( join `  K )
islpln3.a  |-  A  =  ( Atoms `  K )
islpln3.n  |-  N  =  ( LLines `  K )
islpln3.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
islpln3  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  P  <->  E. y  e.  N  E. p  e.  A  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p ) ) ) )
Distinct variable groups:    A, p    y, p, B    K, p, y   
.<_ , p    N, p, y    X, p, y
Allowed substitution hints:    A( y)    P( y, p)    .\/ ( y, p)    .<_ ( y)

Proof of Theorem islpln3
StepHypRef Expression
1 islpln3.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2442 . . 3  |-  (  <o  `  K )  =  ( 
<o  `  K )
3 islpln3.n . . 3  |-  N  =  ( LLines `  K )
4 islpln3.p . . 3  |-  P  =  ( LPlanes `  K )
51, 2, 3, 4islpln4 30426 . 2  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  P  <->  E. y  e.  N  y (  <o  `  K ) X ) )
6 simpll 732 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  K  e.  HL )
71, 3llnbase 30404 . . . . . 6  |-  ( y  e.  N  ->  y  e.  B )
87adantl 454 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  y  e.  B )
9 simplr 733 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  X  e.  B )
10 islpln3.l . . . . . 6  |-  .<_  =  ( le `  K )
11 islpln3.j . . . . . 6  |-  .\/  =  ( join `  K )
12 islpln3.a . . . . . 6  |-  A  =  ( Atoms `  K )
131, 10, 11, 2, 12cvrval3 30308 . . . . 5  |-  ( ( K  e.  HL  /\  y  e.  B  /\  X  e.  B )  ->  ( y (  <o  `  K ) X  <->  E. p  e.  A  ( -.  p  .<_  y  /\  (
y  .\/  p )  =  X ) ) )
146, 8, 9, 13syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  ( y
(  <o  `  K ) X 
<->  E. p  e.  A  ( -.  p  .<_  y  /\  ( y  .\/  p )  =  X ) ) )
15 eqcom 2444 . . . . . . 7  |-  ( ( y  .\/  p )  =  X  <->  X  =  ( y  .\/  p
) )
1615a1i 11 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N )  /\  p  e.  A )  ->  (
( y  .\/  p
)  =  X  <->  X  =  ( y  .\/  p
) ) )
1716anbi2d 686 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N )  /\  p  e.  A )  ->  (
( -.  p  .<_  y  /\  ( y  .\/  p )  =  X )  <->  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p
) ) ) )
1817rexbidva 2728 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  ( E. p  e.  A  ( -.  p  .<_  y  /\  ( y  .\/  p
)  =  X )  <->  E. p  e.  A  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p ) ) ) )
1914, 18bitrd 246 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  y  e.  N
)  ->  ( y
(  <o  `  K ) X 
<->  E. p  e.  A  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p ) ) ) )
2019rexbidva 2728 . 2  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. y  e.  N  y (  <o  `  K ) X  <->  E. y  e.  N  E. p  e.  A  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p ) ) ) )
215, 20bitrd 246 1  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  P  <->  E. y  e.  N  E. p  e.  A  ( -.  p  .<_  y  /\  X  =  ( y  .\/  p ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   E.wrex 2712   class class class wbr 4237   ` cfv 5483  (class class class)co 6110   Basecbs 13500   lecple 13567   joincjn 14432    <o ccvr 30158   Atomscatm 30159   HLchlt 30246   LLinesclln 30386   LPlanesclpl 30387
This theorem is referenced by:  islpln5  30430  lplnexllnN  30459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-undef 6572  df-riota 6578  df-poset 14434  df-plt 14446  df-lub 14462  df-glb 14463  df-join 14464  df-meet 14465  df-p0 14499  df-lat 14506  df-clat 14568  df-oposet 30072  df-ol 30074  df-oml 30075  df-covers 30162  df-ats 30163  df-atl 30194  df-cvlat 30218  df-hlat 30247  df-llines 30393  df-lplanes 30394
  Copyright terms: Public domain W3C validator