Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsat Unicode version

Theorem islsat 29803
Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v  |-  V  =  ( Base `  W
)
lsatset.n  |-  N  =  ( LSpan `  W )
lsatset.z  |-  .0.  =  ( 0g `  W )
lsatset.a  |-  A  =  (LSAtoms `  W )
Assertion
Ref Expression
islsat  |-  ( W  e.  X  ->  ( U  e.  A  <->  E. x  e.  ( V  \  {  .0.  } ) U  =  ( N `  {
x } ) ) )
Distinct variable groups:    x, W    x, X    x, N    x, U    x, V    x,  .0.
Allowed substitution hint:    A( x)

Proof of Theorem islsat
StepHypRef Expression
1 lsatset.v . . . 4  |-  V  =  ( Base `  W
)
2 lsatset.n . . . 4  |-  N  =  ( LSpan `  W )
3 lsatset.z . . . 4  |-  .0.  =  ( 0g `  W )
4 lsatset.a . . . 4  |-  A  =  (LSAtoms `  W )
51, 2, 3, 4lsatset 29802 . . 3  |-  ( W  e.  X  ->  A  =  ran  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `
 { x }
) ) )
65eleq2d 2363 . 2  |-  ( W  e.  X  ->  ( U  e.  A  <->  U  e.  ran  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) ) ) )
7 eqid 2296 . . 3  |-  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) )  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) )
8 fvex 5555 . . 3  |-  ( N `
 { x }
)  e.  _V
97, 8elrnmpti 4946 . 2  |-  ( U  e.  ran  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) )  <->  E. x  e.  ( V  \  {  .0.  } ) U  =  ( N `  {
x } ) )
106, 9syl6bb 252 1  |-  ( W  e.  X  ->  ( U  e.  A  <->  E. x  e.  ( V  \  {  .0.  } ) U  =  ( N `  {
x } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   E.wrex 2557    \ cdif 3162   {csn 3653    e. cmpt 4093   ran crn 4706   ` cfv 5271   Basecbs 13164   0gc0g 13416   LSpanclspn 15744  LSAtomsclsa 29786
This theorem is referenced by:  lsatlspsn2  29804  lsatlspsn  29805  islsati  29806  lsateln0  29807  lsatn0  29811  lsatcmp  29815  lsmsat  29820  lsatfixedN  29821  islshpat  29829  lsatcv0  29843  lsat0cv  29845  lcv1  29853  l1cvpat  29866  dih1dimatlem  32141  dihlatat  32149  dochsatshp  32263
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-lsatoms 29788
  Copyright terms: Public domain W3C validator