Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshp Unicode version

Theorem islshp 29169
Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lshpset.v  |-  V  =  ( Base `  W
)
lshpset.n  |-  N  =  ( LSpan `  W )
lshpset.s  |-  S  =  ( LSubSp `  W )
lshpset.h  |-  H  =  (LSHyp `  W )
Assertion
Ref Expression
islshp  |-  ( W  e.  X  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/= 
V  /\  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V ) ) )
Distinct variable groups:    v, V    v, W    v, U
Allowed substitution hints:    S( v)    H( v)    N( v)    X( v)

Proof of Theorem islshp
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 lshpset.v . . . 4  |-  V  =  ( Base `  W
)
2 lshpset.n . . . 4  |-  N  =  ( LSpan `  W )
3 lshpset.s . . . 4  |-  S  =  ( LSubSp `  W )
4 lshpset.h . . . 4  |-  H  =  (LSHyp `  W )
51, 2, 3, 4lshpset 29168 . . 3  |-  ( W  e.  X  ->  H  =  { s  e.  S  |  ( s  =/= 
V  /\  E. v  e.  V  ( N `  ( s  u.  {
v } ) )  =  V ) } )
65eleq2d 2350 . 2  |-  ( W  e.  X  ->  ( U  e.  H  <->  U  e.  { s  e.  S  | 
( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V ) } ) )
7 neeq1 2454 . . . . 5  |-  ( s  =  U  ->  (
s  =/=  V  <->  U  =/=  V ) )
8 uneq1 3322 . . . . . . . 8  |-  ( s  =  U  ->  (
s  u.  { v } )  =  ( U  u.  { v } ) )
98fveq2d 5529 . . . . . . 7  |-  ( s  =  U  ->  ( N `  ( s  u.  { v } ) )  =  ( N `
 ( U  u.  { v } ) ) )
109eqeq1d 2291 . . . . . 6  |-  ( s  =  U  ->  (
( N `  (
s  u.  { v } ) )  =  V  <->  ( N `  ( U  u.  { v } ) )  =  V ) )
1110rexbidv 2564 . . . . 5  |-  ( s  =  U  ->  ( E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V  <->  E. v  e.  V  ( N `  ( U  u.  { v } ) )  =  V ) )
127, 11anbi12d 691 . . . 4  |-  ( s  =  U  ->  (
( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V )  <->  ( U  =/= 
V  /\  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V ) ) )
1312elrab 2923 . . 3  |-  ( U  e.  { s  e.  S  |  ( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V ) }  <->  ( U  e.  S  /\  ( U  =/=  V  /\  E. v  e.  V  ( N `  ( U  u.  { v } ) )  =  V ) ) )
14 3anass 938 . . 3  |-  ( ( U  e.  S  /\  U  =/=  V  /\  E. v  e.  V  ( N `  ( U  u.  { v } ) )  =  V )  <-> 
( U  e.  S  /\  ( U  =/=  V  /\  E. v  e.  V  ( N `  ( U  u.  { v } ) )  =  V ) ) )
1513, 14bitr4i 243 . 2  |-  ( U  e.  { s  e.  S  |  ( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V ) }  <->  ( U  e.  S  /\  U  =/= 
V  /\  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V ) )
166, 15syl6bb 252 1  |-  ( W  e.  X  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/= 
V  /\  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   {crab 2547    u. cun 3150   {csn 3640   ` cfv 5255   Basecbs 13148   LSubSpclss 15689   LSpanclspn 15728  LSHypclsh 29165
This theorem is referenced by:  islshpsm  29170  lshplss  29171  lshpne  29172  lshpnel2N  29175  lkrshp  29295  lshpset2N  29309  dochsatshp  31641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-lshyp 29167
  Copyright terms: Public domain W3C validator