MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss Unicode version

Theorem islss 15708
Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssset.f  |-  F  =  (Scalar `  W )
lssset.b  |-  B  =  ( Base `  F
)
lssset.v  |-  V  =  ( Base `  W
)
lssset.p  |-  .+  =  ( +g  `  W )
lssset.t  |-  .x.  =  ( .s `  W )
lssset.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
islss  |-  ( U  e.  S  <->  ( U  C_  V  /\  U  =/=  (/)  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U
) )
Distinct variable groups:    x, B    a, b, x, W    U, a, b, x
Allowed substitution hints:    B( a, b)    .+ ( x, a, b)    S( x, a, b)    .x. ( x, a, b)    F( x, a, b)    V( x, a, b)

Proof of Theorem islss
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 elfvex 5571 . . 3  |-  ( U  e.  ( LSubSp `  W
)  ->  W  e.  _V )
2 lssset.s . . 3  |-  S  =  ( LSubSp `  W )
31, 2eleq2s 2388 . 2  |-  ( U  e.  S  ->  W  e.  _V )
4 lssset.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
5 fvprc 5535 . . . . . . . . 9  |-  ( -.  W  e.  _V  ->  (
Base `  W )  =  (/) )
64, 5syl5eq 2340 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  V  =  (/) )
76sseq2d 3219 . . . . . . 7  |-  ( -.  W  e.  _V  ->  ( U  C_  V  <->  U  C_  (/) ) )
87biimpcd 215 . . . . . 6  |-  ( U 
C_  V  ->  ( -.  W  e.  _V  ->  U  C_  (/) ) )
9 ss0 3498 . . . . . 6  |-  ( U 
C_  (/)  ->  U  =  (/) )
108, 9syl6 29 . . . . 5  |-  ( U 
C_  V  ->  ( -.  W  e.  _V  ->  U  =  (/) ) )
1110necon1ad 2526 . . . 4  |-  ( U 
C_  V  ->  ( U  =/=  (/)  ->  W  e.  _V ) )
1211imp 418 . . 3  |-  ( ( U  C_  V  /\  U  =/=  (/) )  ->  W  e.  _V )
13123adant3 975 . 2  |-  ( ( U  C_  V  /\  U  =/=  (/)  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)  ->  W  e.  _V )
14 lssset.f . . . . 5  |-  F  =  (Scalar `  W )
15 lssset.b . . . . 5  |-  B  =  ( Base `  F
)
16 lssset.p . . . . 5  |-  .+  =  ( +g  `  W )
17 lssset.t . . . . 5  |-  .x.  =  ( .s `  W )
1814, 15, 4, 16, 17, 2lssset 15707 . . . 4  |-  ( W  e.  _V  ->  S  =  { s  e.  ( ~P V  \  { (/)
} )  |  A. x  e.  B  A. a  e.  s  A. b  e.  s  (
( x  .x.  a
)  .+  b )  e.  s } )
1918eleq2d 2363 . . 3  |-  ( W  e.  _V  ->  ( U  e.  S  <->  U  e.  { s  e.  ( ~P V  \  { (/) } )  |  A. x  e.  B  A. a  e.  s  A. b  e.  s  ( (
x  .x.  a )  .+  b )  e.  s } ) )
20 eldifsn 3762 . . . . . 6  |-  ( U  e.  ( ~P V  \  { (/) } )  <->  ( U  e.  ~P V  /\  U  =/=  (/) ) )
21 fvex 5555 . . . . . . . . 9  |-  ( Base `  W )  e.  _V
224, 21eqeltri 2366 . . . . . . . 8  |-  V  e. 
_V
2322elpw2 4191 . . . . . . 7  |-  ( U  e.  ~P V  <->  U  C_  V
)
2423anbi1i 676 . . . . . 6  |-  ( ( U  e.  ~P V  /\  U  =/=  (/) )  <->  ( U  C_  V  /\  U  =/=  (/) ) )
2520, 24bitri 240 . . . . 5  |-  ( U  e.  ( ~P V  \  { (/) } )  <->  ( U  C_  V  /\  U  =/=  (/) ) )
2625anbi1i 676 . . . 4  |-  ( ( U  e.  ( ~P V  \  { (/) } )  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)  <->  ( ( U 
C_  V  /\  U  =/=  (/) )  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) )
27 eleq2 2357 . . . . . . . 8  |-  ( s  =  U  ->  (
( ( x  .x.  a )  .+  b
)  e.  s  <->  ( (
x  .x.  a )  .+  b )  e.  U
) )
2827raleqbi1dv 2757 . . . . . . 7  |-  ( s  =  U  ->  ( A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s  <->  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
) )
2928raleqbi1dv 2757 . . . . . 6  |-  ( s  =  U  ->  ( A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s  <->  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
) )
3029ralbidv 2576 . . . . 5  |-  ( s  =  U  ->  ( A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s  <->  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
) )
3130elrab 2936 . . . 4  |-  ( U  e.  { s  e.  ( ~P V  \  { (/) } )  | 
A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s }  <-> 
( U  e.  ( ~P V  \  { (/)
} )  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) )
32 df-3an 936 . . . 4  |-  ( ( U  C_  V  /\  U  =/=  (/)  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)  <->  ( ( U 
C_  V  /\  U  =/=  (/) )  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) )
3326, 31, 323bitr4i 268 . . 3  |-  ( U  e.  { s  e.  ( ~P V  \  { (/) } )  | 
A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s }  <-> 
( U  C_  V  /\  U  =/=  (/)  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) )
3419, 33syl6bb 252 . 2  |-  ( W  e.  _V  ->  ( U  e.  S  <->  ( U  C_  V  /\  U  =/=  (/)  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U
) ) )
353, 13, 34pm5.21nii 342 1  |-  ( U  e.  S  <->  ( U  C_  V  /\  U  =/=  (/)  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   {crab 2560   _Vcvv 2801    \ cdif 3162    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   .scvsca 13228   LSubSpclss 15705
This theorem is referenced by:  islssd  15709  lssss  15710  lssn0  15714  lsscl  15716  islss4  15735  lsspropd  15790  islidl  15979  ocvlss  16588  lkrlss  29907  lclkr  32345  lclkrs  32351  lcfr  32397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-lss 15706
  Copyright terms: Public domain W3C validator