Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isltrn2N Unicode version

Theorem isltrn2N 30127
Description: The predicate "is a lattice translation". Version of isltrn 30126 that considers only different  p and  q. TODO: Can this eliminate some separate proofs for the 
p  =  q case? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrnset.l  |-  .<_  =  ( le `  K )
ltrnset.j  |-  .\/  =  ( join `  K )
ltrnset.m  |-  ./\  =  ( meet `  K )
ltrnset.a  |-  A  =  ( Atoms `  K )
ltrnset.h  |-  H  =  ( LHyp `  K
)
ltrnset.d  |-  D  =  ( ( LDil `  K
) `  W )
ltrnset.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
isltrn2N  |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) ) )
Distinct variable groups:    q, p, A    K, p, q    W, p, q    F, p, q
Allowed substitution hints:    B( q, p)    D( q, p)    T( q, p)    H( q, p)    .\/ ( q, p)   
.<_ ( q, p)    ./\ ( q, p)

Proof of Theorem isltrn2N
StepHypRef Expression
1 ltrnset.l . . 3  |-  .<_  =  ( le `  K )
2 ltrnset.j . . 3  |-  .\/  =  ( join `  K )
3 ltrnset.m . . 3  |-  ./\  =  ( meet `  K )
4 ltrnset.a . . 3  |-  A  =  ( Atoms `  K )
5 ltrnset.h . . 3  |-  H  =  ( LHyp `  K
)
6 ltrnset.d . . 3  |-  D  =  ( ( LDil `  K
) `  W )
7 ltrnset.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
81, 2, 3, 4, 5, 6, 7isltrn 30126 . 2  |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
9 3simpa 952 . . . . . 6  |-  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  -> 
( -.  p  .<_  W  /\  -.  q  .<_  W ) )
109imim1i 54 . . . . 5  |-  ( ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )  ->  (
( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
11 3anass 938 . . . . . . . . 9  |-  ( ( p  =/=  q  /\  -.  p  .<_  W  /\  -.  q  .<_  W )  <-> 
( p  =/=  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) ) )
12 3anrot 939 . . . . . . . . 9  |-  ( ( p  =/=  q  /\  -.  p  .<_  W  /\  -.  q  .<_  W )  <-> 
( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
) )
13 df-ne 2481 . . . . . . . . . 10  |-  ( p  =/=  q  <->  -.  p  =  q )
1413anbi1i 676 . . . . . . . . 9  |-  ( ( p  =/=  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  <->  ( -.  p  =  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) ) )
1511, 12, 143bitr3i 266 . . . . . . . 8  |-  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  <->  ( -.  p  =  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) ) )
1615imbi1i 315 . . . . . . 7  |-  ( ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) )  <-> 
( ( -.  p  =  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
17 impexp 433 . . . . . . 7  |-  ( ( ( -.  p  =  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) )  <-> 
( -.  p  =  q  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
1816, 17bitri 240 . . . . . 6  |-  ( ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) )  <-> 
( -.  p  =  q  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
19 id 19 . . . . . . . . . 10  |-  ( p  =  q  ->  p  =  q )
20 fveq2 5563 . . . . . . . . . 10  |-  ( p  =  q  ->  ( F `  p )  =  ( F `  q ) )
2119, 20oveq12d 5918 . . . . . . . . 9  |-  ( p  =  q  ->  (
p  .\/  ( F `  p ) )  =  ( q  .\/  ( F `  q )
) )
2221oveq1d 5915 . . . . . . . 8  |-  ( p  =  q  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )
2322a1d 22 . . . . . . 7  |-  ( p  =  q  ->  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )
24 pm2.61 163 . . . . . . 7  |-  ( ( p  =  q  -> 
( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )  -> 
( ( -.  p  =  q  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
2523, 24ax-mp 8 . . . . . 6  |-  ( ( -.  p  =  q  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
2618, 25sylbi 187 . . . . 5  |-  ( ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) )  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
2710, 26impbii 180 . . . 4  |-  ( ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )  <->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  -> 
( ( p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )
28272ralbii 2603 . . 3  |-  ( A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )  <->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  -> 
( ( p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )
2928anbi2i 675 . 2  |-  ( ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  -> 
( ( p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) )
308, 29syl6bb 252 1  |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701    =/= wne 2479   A.wral 2577   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   lecple 13262   joincjn 14127   meetcmee 14128   Atomscatm 29271   LHypclh 29991   LDilcldil 30107   LTrncltrn 30108
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-ltrn 30112
  Copyright terms: Public domain W3C validator