MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islvec Unicode version

Theorem islvec 15956
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.)
Hypothesis
Ref Expression
islvec.1  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
islvec  |-  ( W  e.  LVec  <->  ( W  e. 
LMod  /\  F  e.  DivRing ) )

Proof of Theorem islvec
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq2 5608 . . . 4  |-  ( f  =  W  ->  (Scalar `  f )  =  (Scalar `  W ) )
2 islvec.1 . . . 4  |-  F  =  (Scalar `  W )
31, 2syl6eqr 2408 . . 3  |-  ( f  =  W  ->  (Scalar `  f )  =  F )
43eleq1d 2424 . 2  |-  ( f  =  W  ->  (
(Scalar `  f )  e.  DivRing 
<->  F  e.  DivRing ) )
5 df-lvec 15955 . 2  |-  LVec  =  { f  e.  LMod  |  (Scalar `  f )  e.  DivRing }
64, 5elrab2 3001 1  |-  ( W  e.  LVec  <->  ( W  e. 
LMod  /\  F  e.  DivRing ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   ` cfv 5337  Scalarcsca 13308   DivRingcdr 15611   LModclmod 15726   LVecclvec 15954
This theorem is referenced by:  lvecdrng  15957  lveclmod  15958  lsslvec  15959  lvecprop2d  16018  lvecpropd  16019  rlmlvec  16057  tvclvec  17983  isnvc2  18311  lduallvec  29413  dvalveclem  31284  dvhlveclem  31367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-iota 5301  df-fv 5345  df-lvec 15955
  Copyright terms: Public domain W3C validator