Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol2 Structured version   Unicode version

Theorem islvol2 30378
Description: The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
islvol5.b  |-  B  =  ( Base `  K
)
islvol5.l  |-  .<_  =  ( le `  K )
islvol5.j  |-  .\/  =  ( join `  K )
islvol5.a  |-  A  =  ( Atoms `  K )
islvol5.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
islvol2  |-  ( K  e.  HL  ->  ( X  e.  V  <->  ( X  e.  B  /\  E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  /\  X  =  ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) )
Distinct variable groups:    q, p, r, s, A    B, p, q, r, s    .\/ , p, q, r, s    K, p, q, r, s    .<_ , p, q, r, s    X, p, q, r, s
Allowed substitution hints:    V( s, r, q, p)

Proof of Theorem islvol2
StepHypRef Expression
1 islvol5.b . . . 4  |-  B  =  ( Base `  K
)
2 islvol5.v . . . 4  |-  V  =  ( LVols `  K )
31, 2lvolbase 30376 . . 3  |-  ( X  e.  V  ->  X  e.  B )
43pm4.71ri 616 . 2  |-  ( X  e.  V  <->  ( X  e.  B  /\  X  e.  V ) )
5 islvol5.l . . . 4  |-  .<_  =  ( le `  K )
6 islvol5.j . . . 4  |-  .\/  =  ( join `  K )
7 islvol5.a . . . 4  |-  A  =  ( Atoms `  K )
81, 5, 6, 7, 2islvol5 30377 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  V  <->  E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  (
( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  /\  X  =  ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) )
98pm5.32da 624 . 2  |-  ( K  e.  HL  ->  (
( X  e.  B  /\  X  e.  V
)  <->  ( X  e.  B  /\  E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  /\  X  =  ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) )
104, 9syl5bb 250 1  |-  ( K  e.  HL  ->  ( X  e.  V  <->  ( X  e.  B  /\  E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  /\  X  =  ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2600   E.wrex 2707   class class class wbr 4213   ` cfv 5455  (class class class)co 6082   Basecbs 13470   lecple 13537   joincjn 14402   Atomscatm 30062   HLchlt 30149   LVolsclvol 30291
This theorem is referenced by:  lplncvrlvol2  30413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-undef 6544  df-riota 6550  df-poset 14404  df-plt 14416  df-lub 14432  df-glb 14433  df-join 14434  df-meet 14435  df-p0 14469  df-lat 14476  df-clat 14538  df-oposet 29975  df-ol 29977  df-oml 29978  df-covers 30065  df-ats 30066  df-atl 30097  df-cvlat 30121  df-hlat 30150  df-llines 30296  df-lplanes 30297  df-lvols 30298
  Copyright terms: Public domain W3C validator