Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol4 Structured version   Unicode version

Theorem islvol4 30371
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b  |-  B  =  ( Base `  K
)
lvolset.c  |-  C  =  (  <o  `  K )
lvolset.p  |-  P  =  ( LPlanes `  K )
lvolset.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
islvol4  |-  ( ( K  e.  A  /\  X  e.  B )  ->  ( X  e.  V  <->  E. y  e.  P  y C X ) )
Distinct variable groups:    y, P    y, K    y, X
Allowed substitution hints:    A( y)    B( y)    C( y)    V( y)

Proof of Theorem islvol4
StepHypRef Expression
1 lvolset.b . . 3  |-  B  =  ( Base `  K
)
2 lvolset.c . . 3  |-  C  =  (  <o  `  K )
3 lvolset.p . . 3  |-  P  =  ( LPlanes `  K )
4 lvolset.v . . 3  |-  V  =  ( LVols `  K )
51, 2, 3, 4islvol 30370 . 2  |-  ( K  e.  A  ->  ( X  e.  V  <->  ( X  e.  B  /\  E. y  e.  P  y C X ) ) )
65baibd 876 1  |-  ( ( K  e.  A  /\  X  e.  B )  ->  ( X  e.  V  <->  E. y  e.  P  y C X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706   class class class wbr 4212   ` cfv 5454   Basecbs 13469    <o ccvr 30060   LPlanesclpl 30289   LVolsclvol 30290
This theorem is referenced by:  islvol3  30373  lvolcmp  30414
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-lvols 30297
  Copyright terms: Public domain W3C validator