MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf3d Structured version   Unicode version

Theorem ismbf3d 19549
Description: Simplified form of ismbfd 19535. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbf3d.1  |-  ( ph  ->  F : A --> RR )
ismbf3d.2  |-  ( (
ph  /\  x  e.  RR )  ->  ( `' F " ( x (,)  +oo ) )  e. 
dom  vol )
Assertion
Ref Expression
ismbf3d  |-  ( ph  ->  F  e. MblFn )
Distinct variable groups:    x, F    ph, x
Allowed substitution hint:    A( x)

Proof of Theorem ismbf3d
Dummy variables  v  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbf3d.1 . 2  |-  ( ph  ->  F : A --> RR )
2 fimacnv 5865 . . . 4  |-  ( F : A --> RR  ->  ( `' F " RR )  =  A )
31, 2syl 16 . . 3  |-  ( ph  ->  ( `' F " RR )  =  A
)
4 imaiun 5995 . . . . 5  |-  ( `' F " U_ y  e.  NN  ( -u y (,)  +oo ) )  = 
U_ y  e.  NN  ( `' F " ( -u y (,)  +oo ) )
5 ioossre 10977 . . . . . . . . 9  |-  ( -u y (,)  +oo )  C_  RR
65rgenw 2775 . . . . . . . 8  |-  A. y  e.  NN  ( -u y (,)  +oo )  C_  RR
7 iunss 4134 . . . . . . . 8  |-  ( U_ y  e.  NN  ( -u y (,)  +oo )  C_  RR  <->  A. y  e.  NN  ( -u y (,)  +oo )  C_  RR )
86, 7mpbir 202 . . . . . . 7  |-  U_ y  e.  NN  ( -u y (,)  +oo )  C_  RR
9 renegcl 9369 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  -u z  e.  RR )
10 arch 10223 . . . . . . . . . . 11  |-  ( -u z  e.  RR  ->  E. y  e.  NN  -u z  <  y )
119, 10syl 16 . . . . . . . . . 10  |-  ( z  e.  RR  ->  E. y  e.  NN  -u z  <  y
)
12 simpl 445 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  z  e.  RR )
1312biantrurd 496 . . . . . . . . . . . 12  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  ( -u y  < 
z  <->  ( z  e.  RR  /\  -u y  <  z ) ) )
14 nnre 10012 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  RR )
15 ltnegcon1 9534 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( -u z  < 
y  <->  -u y  <  z
) )
1614, 15sylan2 462 . . . . . . . . . . . 12  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  ( -u z  < 
y  <->  -u y  <  z
) )
1714adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  y  e.  RR )
1817renegcld 9469 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  y  e.  NN )  -> 
-u y  e.  RR )
1918rexrd 9139 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  y  e.  NN )  -> 
-u y  e.  RR* )
20 elioopnf 11003 . . . . . . . . . . . . 13  |-  ( -u y  e.  RR*  ->  (
z  e.  ( -u y (,)  +oo )  <->  ( z  e.  RR  /\  -u y  <  z ) ) )
2119, 20syl 16 . . . . . . . . . . . 12  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  ( z  e.  (
-u y (,)  +oo ) 
<->  ( z  e.  RR  /\  -u y  <  z ) ) )
2213, 16, 213bitr4d 278 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  ( -u z  < 
y  <->  z  e.  (
-u y (,)  +oo ) ) )
2322rexbidva 2724 . . . . . . . . . 10  |-  ( z  e.  RR  ->  ( E. y  e.  NN  -u z  <  y  <->  E. y  e.  NN  z  e.  (
-u y (,)  +oo ) ) )
2411, 23mpbid 203 . . . . . . . . 9  |-  ( z  e.  RR  ->  E. y  e.  NN  z  e.  (
-u y (,)  +oo ) )
25 eliun 4099 . . . . . . . . 9  |-  ( z  e.  U_ y  e.  NN  ( -u y (,)  +oo )  <->  E. y  e.  NN  z  e.  (
-u y (,)  +oo ) )
2624, 25sylibr 205 . . . . . . . 8  |-  ( z  e.  RR  ->  z  e.  U_ y  e.  NN  ( -u y (,)  +oo ) )
2726ssriv 3354 . . . . . . 7  |-  RR  C_  U_ y  e.  NN  ( -u y (,)  +oo )
288, 27eqssi 3366 . . . . . 6  |-  U_ y  e.  NN  ( -u y (,)  +oo )  =  RR
2928imaeq2i 5204 . . . . 5  |-  ( `' F " U_ y  e.  NN  ( -u y (,)  +oo ) )  =  ( `' F " RR )
304, 29eqtr3i 2460 . . . 4  |-  U_ y  e.  NN  ( `' F " ( -u y (,) 
+oo ) )  =  ( `' F " RR )
31 ismbf3d.2 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( `' F " ( x (,)  +oo ) )  e. 
dom  vol )
3231ralrimiva 2791 . . . . . . 7  |-  ( ph  ->  A. x  e.  RR  ( `' F " ( x (,)  +oo ) )  e. 
dom  vol )
3314renegcld 9469 . . . . . . 7  |-  ( y  e.  NN  ->  -u y  e.  RR )
34 oveq1 6091 . . . . . . . . . 10  |-  ( x  =  -u y  ->  (
x (,)  +oo )  =  ( -u y (,) 
+oo ) )
3534imaeq2d 5206 . . . . . . . . 9  |-  ( x  =  -u y  ->  ( `' F " ( x (,)  +oo ) )  =  ( `' F "
( -u y (,)  +oo ) ) )
3635eleq1d 2504 . . . . . . . 8  |-  ( x  =  -u y  ->  (
( `' F "
( x (,)  +oo ) )  e.  dom  vol  <->  ( `' F " ( -u y (,)  +oo ) )  e. 
dom  vol ) )
3736rspccva 3053 . . . . . . 7  |-  ( ( A. x  e.  RR  ( `' F " ( x (,)  +oo ) )  e. 
dom  vol  /\  -u y  e.  RR )  ->  ( `' F " ( -u y (,)  +oo ) )  e. 
dom  vol )
3832, 33, 37syl2an 465 . . . . . 6  |-  ( (
ph  /\  y  e.  NN )  ->  ( `' F " ( -u y (,)  +oo ) )  e. 
dom  vol )
3938ralrimiva 2791 . . . . 5  |-  ( ph  ->  A. y  e.  NN  ( `' F " ( -u y (,)  +oo ) )  e. 
dom  vol )
40 iunmbl 19452 . . . . 5  |-  ( A. y  e.  NN  ( `' F " ( -u y (,)  +oo ) )  e. 
dom  vol  ->  U_ y  e.  NN  ( `' F " ( -u y (,) 
+oo ) )  e. 
dom  vol )
4139, 40syl 16 . . . 4  |-  ( ph  ->  U_ y  e.  NN  ( `' F " ( -u y (,)  +oo ) )  e. 
dom  vol )
4230, 41syl5eqelr 2523 . . 3  |-  ( ph  ->  ( `' F " RR )  e.  dom  vol )
433, 42eqeltrrd 2513 . 2  |-  ( ph  ->  A  e.  dom  vol )
44 imaiun 5995 . . . . . . 7  |-  ( `' F " U_ y  e.  NN  (  -oo (,] ( z  -  (
1  /  y ) ) ) )  = 
U_ y  e.  NN  ( `' F " (  -oo (,] ( z  -  (
1  /  y ) ) ) )
45 eliun 4099 . . . . . . . . . 10  |-  ( x  e.  U_ y  e.  NN  (  -oo (,] ( z  -  (
1  /  y ) ) )  <->  E. y  e.  NN  x  e.  ( 
-oo (,] ( z  -  ( 1  /  y
) ) ) )
46 3simpb 956 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  -oo 
<  x  /\  x  <_  ( z  -  (
1  /  y ) ) )  ->  (
x  e.  RR  /\  x  <_  ( z  -  ( 1  /  y
) ) ) )
47 simplr 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  z  e.  RR )
48 nnrp 10626 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  NN  ->  y  e.  RR+ )
4948ad2antrl 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  y  e.  RR+ )
5049rpreccld 10663 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  ( 1  /  y )  e.  RR+ )
5147, 50ltsubrpd 10681 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  ( z  -  ( 1  / 
y ) )  < 
z )
52 simprr 735 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  x  e.  RR )
53 simpr 449 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  z  e.  RR )  ->  z  e.  RR )
54 nnrecre 10041 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  NN  ->  (
1  /  y )  e.  RR )
55 resubcl 9370 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  RR  /\  ( 1  /  y
)  e.  RR )  ->  ( z  -  ( 1  /  y
) )  e.  RR )
5653, 54, 55syl2an 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
z  -  ( 1  /  y ) )  e.  RR )
5756adantrr 699 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  ( z  -  ( 1  / 
y ) )  e.  RR )
58 lelttr 9170 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  ( z  -  (
1  /  y ) )  e.  RR  /\  z  e.  RR )  ->  ( ( x  <_ 
( z  -  (
1  /  y ) )  /\  ( z  -  ( 1  / 
y ) )  < 
z )  ->  x  <  z ) )
5952, 57, 47, 58syl3anc 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  ( (
x  <_  ( z  -  ( 1  / 
y ) )  /\  ( z  -  (
1  /  y ) )  <  z )  ->  x  <  z
) )
6051, 59mpan2d 657 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  ( x  <_  ( z  -  (
1  /  y ) )  ->  x  <  z ) )
6160anassrs 631 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  /\  x  e.  RR )  ->  ( x  <_ 
( z  -  (
1  /  y ) )  ->  x  <  z ) )
6261imdistanda 676 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( x  e.  RR  /\  x  <_  ( z  -  ( 1  / 
y ) ) )  ->  ( x  e.  RR  /\  x  < 
z ) ) )
6346, 62syl5 31 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( x  e.  RR  /\ 
-oo  <  x  /\  x  <_  ( z  -  (
1  /  y ) ) )  ->  (
x  e.  RR  /\  x  <  z ) ) )
64 mnfxr 10719 . . . . . . . . . . . . . . . 16  |-  -oo  e.  RR*
65 elioc2 10978 . . . . . . . . . . . . . . . 16  |-  ( ( 
-oo  e.  RR*  /\  (
z  -  ( 1  /  y ) )  e.  RR )  -> 
( x  e.  ( 
-oo (,] ( z  -  ( 1  /  y
) ) )  <->  ( x  e.  RR  /\  -oo  <  x  /\  x  <_  (
z  -  ( 1  /  y ) ) ) ) )
6664, 56, 65sylancr 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
x  e.  (  -oo (,] ( z  -  (
1  /  y ) ) )  <->  ( x  e.  RR  /\  -oo  <  x  /\  x  <_  (
z  -  ( 1  /  y ) ) ) ) )
67 rexr 9135 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  RR  ->  z  e.  RR* )
6867adantl 454 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  RR )  ->  z  e. 
RR* )
69 elioomnf 11004 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  RR*  ->  ( x  e.  (  -oo (,) z )  <->  ( x  e.  RR  /\  x  < 
z ) ) )
7068, 69syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  RR )  ->  ( x  e.  (  -oo (,) z )  <->  ( x  e.  RR  /\  x  < 
z ) ) )
7170adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
x  e.  (  -oo (,) z )  <->  ( x  e.  RR  /\  x  < 
z ) ) )
7263, 66, 713imtr4d 261 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
x  e.  (  -oo (,] ( z  -  (
1  /  y ) ) )  ->  x  e.  (  -oo (,) z
) ) )
7372rexlimdva 2832 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  RR )  ->  ( E. y  e.  NN  x  e.  (  -oo (,] (
z  -  ( 1  /  y ) ) )  ->  x  e.  (  -oo (,) z ) ) )
7473, 70sylibd 207 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  RR )  ->  ( E. y  e.  NN  x  e.  (  -oo (,] (
z  -  ( 1  /  y ) ) )  ->  ( x  e.  RR  /\  x  < 
z ) ) )
75 simplr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  z  e.  RR )
76 simprl 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  x  e.  RR )
7775, 76resubcld 9470 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  ( z  -  x )  e.  RR )
78 simprr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  x  <  z
)
7976, 75posdifd 9618 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  ( x  < 
z  <->  0  <  (
z  -  x ) ) )
8078, 79mpbid 203 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  0  <  (
z  -  x ) )
81 nnrecl 10224 . . . . . . . . . . . . . . 15  |-  ( ( ( z  -  x
)  e.  RR  /\  0  <  ( z  -  x ) )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( z  -  x ) )
8277, 80, 81syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( z  -  x ) )
8376adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  x  e.  RR )
84 mnflt 10727 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  -oo  <  x )
8583, 84syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  -oo  <  x )
8656ad2ant2r 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  ( z  -  ( 1  /  y
) )  e.  RR )
8754ad2antrl 710 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  ( 1  / 
y )  e.  RR )
8875adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  z  e.  RR )
89 simprr 735 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  ( 1  / 
y )  <  (
z  -  x ) )
9087, 88, 83, 89ltsub13d 9637 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  x  <  (
z  -  ( 1  /  y ) ) )
9183, 86, 90ltled 9226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  x  <_  (
z  -  ( 1  /  y ) ) )
9266ad2ant2r 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  ( x  e.  (  -oo (,] (
z  -  ( 1  /  y ) ) )  <->  ( x  e.  RR  /\  -oo  <  x  /\  x  <_  (
z  -  ( 1  /  y ) ) ) ) )
9383, 85, 91, 92mpbir3and 1138 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  x  e.  ( 
-oo (,] ( z  -  ( 1  /  y
) ) ) )
9493expr 600 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  y  e.  NN )  ->  (
( 1  /  y
)  <  ( z  -  x )  ->  x  e.  (  -oo (,] (
z  -  ( 1  /  y ) ) ) ) )
9594reximdva 2820 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  ( E. y  e.  NN  ( 1  / 
y )  <  (
z  -  x )  ->  E. y  e.  NN  x  e.  (  -oo (,] ( z  -  (
1  /  y ) ) ) ) )
9682, 95mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  E. y  e.  NN  x  e.  (  -oo (,] ( z  -  (
1  /  y ) ) ) )
9796ex 425 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  RR )  ->  ( ( x  e.  RR  /\  x  <  z )  ->  E. y  e.  NN  x  e.  (  -oo (,] ( z  -  (
1  /  y ) ) ) ) )
9874, 97impbid 185 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  RR )  ->  ( E. y  e.  NN  x  e.  (  -oo (,] (
z  -  ( 1  /  y ) ) )  <->  ( x  e.  RR  /\  x  < 
z ) ) )
9998, 70bitr4d 249 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  RR )  ->  ( E. y  e.  NN  x  e.  (  -oo (,] (
z  -  ( 1  /  y ) ) )  <->  x  e.  (  -oo (,) z ) ) )
10045, 99syl5bb 250 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  RR )  ->  ( x  e.  U_ y  e.  NN  (  -oo (,] ( z  -  (
1  /  y ) ) )  <->  x  e.  (  -oo (,) z ) ) )
101100eqrdv 2436 . . . . . . . 8  |-  ( (
ph  /\  z  e.  RR )  ->  U_ y  e.  NN  (  -oo (,] ( z  -  (
1  /  y ) ) )  =  ( 
-oo (,) z ) )
102101imaeq2d 5206 . . . . . . 7  |-  ( (
ph  /\  z  e.  RR )  ->  ( `' F " U_ y  e.  NN  (  -oo (,] ( z  -  (
1  /  y ) ) ) )  =  ( `' F "
(  -oo (,) z ) ) )
10344, 102syl5eqr 2484 . . . . . 6  |-  ( (
ph  /\  z  e.  RR )  ->  U_ y  e.  NN  ( `' F " (  -oo (,] (
z  -  ( 1  /  y ) ) ) )  =  ( `' F " (  -oo (,) z ) ) )
1041ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  F : A --> RR )
105 ffun 5596 . . . . . . . . . . 11  |-  ( F : A --> RR  ->  Fun 
F )
106 funcnvcnv 5512 . . . . . . . . . . 11  |-  ( Fun 
F  ->  Fun  `' `' F )
107 imadif 5531 . . . . . . . . . . 11  |-  ( Fun  `' `' F  ->  ( `' F " ( RR 
\  ( ( z  -  ( 1  / 
y ) ) (,) 
+oo ) ) )  =  ( ( `' F " RR ) 
\  ( `' F " ( ( z  -  ( 1  /  y
) ) (,)  +oo ) ) ) )
108104, 105, 106, 1074syl 20 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( `' F " ( RR 
\  ( ( z  -  ( 1  / 
y ) ) (,) 
+oo ) ) )  =  ( ( `' F " RR ) 
\  ( `' F " ( ( z  -  ( 1  /  y
) ) (,)  +oo ) ) ) )
10964a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  -oo  e.  RR* )
11056rexrd 9139 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
z  -  ( 1  /  y ) )  e.  RR* )
111 pnfxr 10718 . . . . . . . . . . . . . . 15  |-  +oo  e.  RR*
112111a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  +oo  e.  RR* )
113 mnflt 10727 . . . . . . . . . . . . . . 15  |-  ( ( z  -  ( 1  /  y ) )  e.  RR  ->  -oo  <  ( z  -  ( 1  /  y ) ) )
11456, 113syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  -oo  <  ( z  -  ( 1  /  y ) ) )
115 ltpnf 10726 . . . . . . . . . . . . . . 15  |-  ( ( z  -  ( 1  /  y ) )  e.  RR  ->  (
z  -  ( 1  /  y ) )  <  +oo )
11656, 115syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
z  -  ( 1  /  y ) )  <  +oo )
117 df-ioc 10926 . . . . . . . . . . . . . . 15  |-  (,]  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <  w  /\  w  <_  v ) } )
118 df-ioo 10925 . . . . . . . . . . . . . . 15  |-  (,)  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <  w  /\  w  <  v ) } )
119 xrltnle 9149 . . . . . . . . . . . . . . 15  |-  ( ( ( z  -  (
1  /  y ) )  e.  RR*  /\  x  e.  RR* )  ->  (
( z  -  (
1  /  y ) )  <  x  <->  -.  x  <_  ( z  -  (
1  /  y ) ) ) )
120 xrlelttr 10751 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  (
z  -  ( 1  /  y ) )  e.  RR*  /\  +oo  e.  RR* )  ->  ( (
x  <_  ( z  -  ( 1  / 
y ) )  /\  ( z  -  (
1  /  y ) )  <  +oo )  ->  x  <  +oo )
)
121 xrlttr 10738 . . . . . . . . . . . . . . 15  |-  ( ( 
-oo  e.  RR*  /\  (
z  -  ( 1  /  y ) )  e.  RR*  /\  x  e.  RR* )  ->  (
(  -oo  <  ( z  -  ( 1  / 
y ) )  /\  ( z  -  (
1  /  y ) )  <  x )  ->  -oo  <  x ) )
122117, 118, 119, 118, 120, 121ixxun 10937 . . . . . . . . . . . . . 14  |-  ( ( (  -oo  e.  RR*  /\  ( z  -  (
1  /  y ) )  e.  RR*  /\  +oo  e.  RR* )  /\  (  -oo  <  ( z  -  ( 1  /  y
) )  /\  (
z  -  ( 1  /  y ) )  <  +oo ) )  -> 
( (  -oo (,] ( z  -  (
1  /  y ) ) )  u.  (
( z  -  (
1  /  y ) ) (,)  +oo )
)  =  (  -oo (,) 
+oo ) )
123109, 110, 112, 114, 116, 122syl32anc 1193 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
(  -oo (,] ( z  -  ( 1  / 
y ) ) )  u.  ( ( z  -  ( 1  / 
y ) ) (,) 
+oo ) )  =  (  -oo (,)  +oo ) )
124 uncom 3493 . . . . . . . . . . . . 13  |-  ( ( 
-oo (,] ( z  -  ( 1  /  y
) ) )  u.  ( ( z  -  ( 1  /  y
) ) (,)  +oo ) )  =  ( ( ( z  -  ( 1  /  y
) ) (,)  +oo )  u.  (  -oo (,] ( z  -  (
1  /  y ) ) ) )
125 ioomax 10990 . . . . . . . . . . . . 13  |-  (  -oo (,) 
+oo )  =  RR
126123, 124, 1253eqtr3g 2493 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( ( z  -  ( 1  /  y
) ) (,)  +oo )  u.  (  -oo (,] ( z  -  (
1  /  y ) ) ) )  =  RR )
127 ioossre 10977 . . . . . . . . . . . . 13  |-  ( ( z  -  ( 1  /  y ) ) (,)  +oo )  C_  RR
128 incom 3535 . . . . . . . . . . . . . 14  |-  ( ( ( z  -  (
1  /  y ) ) (,)  +oo )  i^i  (  -oo (,] (
z  -  ( 1  /  y ) ) ) )  =  ( (  -oo (,] (
z  -  ( 1  /  y ) ) )  i^i  ( ( z  -  ( 1  /  y ) ) (,)  +oo ) )
129117, 118, 119ixxdisj 10936 . . . . . . . . . . . . . . . 16  |-  ( ( 
-oo  e.  RR*  /\  (
z  -  ( 1  /  y ) )  e.  RR*  /\  +oo  e.  RR* )  ->  ( (  -oo (,] ( z  -  ( 1  /  y
) ) )  i^i  ( ( z  -  ( 1  /  y
) ) (,)  +oo ) )  =  (/) )
13064, 111, 129mp3an13 1271 . . . . . . . . . . . . . . 15  |-  ( ( z  -  ( 1  /  y ) )  e.  RR*  ->  ( ( 
-oo (,] ( z  -  ( 1  /  y
) ) )  i^i  ( ( z  -  ( 1  /  y
) ) (,)  +oo ) )  =  (/) )
131110, 130syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
(  -oo (,] ( z  -  ( 1  / 
y ) ) )  i^i  ( ( z  -  ( 1  / 
y ) ) (,) 
+oo ) )  =  (/) )
132128, 131syl5eq 2482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( ( z  -  ( 1  /  y
) ) (,)  +oo )  i^i  (  -oo (,] ( z  -  (
1  /  y ) ) ) )  =  (/) )
133 uneqdifeq 3718 . . . . . . . . . . . . 13  |-  ( ( ( ( z  -  ( 1  /  y
) ) (,)  +oo )  C_  RR  /\  (
( ( z  -  ( 1  /  y
) ) (,)  +oo )  i^i  (  -oo (,] ( z  -  (
1  /  y ) ) ) )  =  (/) )  ->  ( ( ( ( z  -  ( 1  /  y
) ) (,)  +oo )  u.  (  -oo (,] ( z  -  (
1  /  y ) ) ) )  =  RR  <->  ( RR  \ 
( ( z  -  ( 1  /  y
) ) (,)  +oo ) )  =  ( 
-oo (,] ( z  -  ( 1  /  y
) ) ) ) )
134127, 132, 133sylancr 646 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( ( ( z  -  ( 1  / 
y ) ) (,) 
+oo )  u.  (  -oo (,] ( z  -  ( 1  /  y
) ) ) )  =  RR  <->  ( RR  \  ( ( z  -  ( 1  /  y
) ) (,)  +oo ) )  =  ( 
-oo (,] ( z  -  ( 1  /  y
) ) ) ) )
135126, 134mpbid 203 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( RR  \  ( ( z  -  ( 1  / 
y ) ) (,) 
+oo ) )  =  (  -oo (,] (
z  -  ( 1  /  y ) ) ) )
136135imaeq2d 5206 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( `' F " ( RR 
\  ( ( z  -  ( 1  / 
y ) ) (,) 
+oo ) ) )  =  ( `' F " (  -oo (,] (
z  -  ( 1  /  y ) ) ) ) )
137108, 136eqtr3d 2472 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( `' F " RR )  \  ( `' F " ( ( z  -  ( 1  /  y ) ) (,)  +oo ) ) )  =  ( `' F " (  -oo (,] (
z  -  ( 1  /  y ) ) ) ) )
13842ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( `' F " RR )  e.  dom  vol )
13932ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  A. x  e.  RR  ( `' F " ( x (,)  +oo ) )  e.  dom  vol )
140 oveq1 6091 . . . . . . . . . . . . . 14  |-  ( x  =  ( z  -  ( 1  /  y
) )  ->  (
x (,)  +oo )  =  ( ( z  -  ( 1  /  y
) ) (,)  +oo ) )
141140imaeq2d 5206 . . . . . . . . . . . . 13  |-  ( x  =  ( z  -  ( 1  /  y
) )  ->  ( `' F " ( x (,)  +oo ) )  =  ( `' F "
( ( z  -  ( 1  /  y
) ) (,)  +oo ) ) )
142141eleq1d 2504 . . . . . . . . . . . 12  |-  ( x  =  ( z  -  ( 1  /  y
) )  ->  (
( `' F "
( x (,)  +oo ) )  e.  dom  vol  <->  ( `' F " ( ( z  -  ( 1  /  y ) ) (,)  +oo ) )  e. 
dom  vol ) )
143142rspcv 3050 . . . . . . . . . . 11  |-  ( ( z  -  ( 1  /  y ) )  e.  RR  ->  ( A. x  e.  RR  ( `' F " ( x (,)  +oo ) )  e. 
dom  vol  ->  ( `' F " ( ( z  -  ( 1  / 
y ) ) (,) 
+oo ) )  e. 
dom  vol ) )
14456, 139, 143sylc 59 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( `' F " ( ( z  -  ( 1  /  y ) ) (,)  +oo ) )  e. 
dom  vol )
145 difmbl 19442 . . . . . . . . . 10  |-  ( ( ( `' F " RR )  e.  dom  vol 
/\  ( `' F " ( ( z  -  ( 1  /  y
) ) (,)  +oo ) )  e.  dom  vol )  ->  ( ( `' F " RR ) 
\  ( `' F " ( ( z  -  ( 1  /  y
) ) (,)  +oo ) ) )  e. 
dom  vol )
146138, 144, 145syl2anc 644 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( `' F " RR )  \  ( `' F " ( ( z  -  ( 1  /  y ) ) (,)  +oo ) ) )  e.  dom  vol )
147137, 146eqeltrrd 2513 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( `' F " (  -oo (,] ( z  -  (
1  /  y ) ) ) )  e. 
dom  vol )
148147ralrimiva 2791 . . . . . . 7  |-  ( (
ph  /\  z  e.  RR )  ->  A. y  e.  NN  ( `' F " (  -oo (,] (
z  -  ( 1  /  y ) ) ) )  e.  dom  vol )
149 iunmbl 19452 . . . . . . 7  |-  ( A. y  e.  NN  ( `' F " (  -oo (,] ( z  -  (
1  /  y ) ) ) )  e. 
dom  vol  ->  U_ y  e.  NN  ( `' F " (  -oo (,] (
z  -  ( 1  /  y ) ) ) )  e.  dom  vol )
150148, 149syl 16 . . . . . 6  |-  ( (
ph  /\  z  e.  RR )  ->  U_ y  e.  NN  ( `' F " (  -oo (,] (
z  -  ( 1  /  y ) ) ) )  e.  dom  vol )
151103, 150eqeltrrd 2513 . . . . 5  |-  ( (
ph  /\  z  e.  RR )  ->  ( `' F " (  -oo (,) z ) )  e. 
dom  vol )
152151ralrimiva 2791 . . . 4  |-  ( ph  ->  A. z  e.  RR  ( `' F " (  -oo (,) z ) )  e. 
dom  vol )
153 oveq2 6092 . . . . . . 7  |-  ( z  =  x  ->  (  -oo (,) z )  =  (  -oo (,) x
) )
154153imaeq2d 5206 . . . . . 6  |-  ( z  =  x  ->  ( `' F " (  -oo (,) z ) )  =  ( `' F "
(  -oo (,) x ) ) )
155154eleq1d 2504 . . . . 5  |-  ( z  =  x  ->  (
( `' F "
(  -oo (,) z ) )  e.  dom  vol  <->  ( `' F " (  -oo (,) x ) )  e. 
dom  vol ) )
156155cbvralv 2934 . . . 4  |-  ( A. z  e.  RR  ( `' F " (  -oo (,) z ) )  e. 
dom  vol  <->  A. x  e.  RR  ( `' F " (  -oo (,) x ) )  e. 
dom  vol )
157152, 156sylib 190 . . 3  |-  ( ph  ->  A. x  e.  RR  ( `' F " (  -oo (,) x ) )  e. 
dom  vol )
158157r19.21bi 2806 . 2  |-  ( (
ph  /\  x  e.  RR )  ->  ( `' F " (  -oo (,) x ) )  e. 
dom  vol )
1591, 43, 31, 158ismbf2d 19536 1  |-  ( ph  ->  F  e. MblFn )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    \ cdif 3319    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   U_ciun 4095   class class class wbr 4215   `'ccnv 4880   dom cdm 4881   "cima 4884   Fun wfun 5451   -->wf 5453  (class class class)co 6084   RRcr 8994   0cc0 8995   1c1 8996    +oocpnf 9122    -oocmnf 9123   RR*cxr 9124    < clt 9125    <_ cle 9126    - cmin 9296   -ucneg 9297    / cdiv 9682   NNcn 10005   RR+crp 10617   (,)cioo 10921   (,]cioc 10922   volcvol 19365  MblFncmbf 19511
This theorem is referenced by:  mbfaddlem  19555  mbfsup  19559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cc 8320  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-disj 4186  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-xadd 10716  df-ioo 10925  df-ioc 10926  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-rlim 12288  df-sum 12485  df-xmet 16700  df-met 16701  df-ovol 19366  df-vol 19367  df-mbf 19516
  Copyright terms: Public domain W3C validator