MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbfcn2 Unicode version

Theorem ismbfcn2 18994
Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypothesis
Ref Expression
ismbfcn2.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
ismbfcn2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  B ) )  e. MblFn ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem ismbfcn2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ismbfcn2.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
2 eqid 2283 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
31, 2fmptd 5684 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
4 ismbfcn 18986 . . 3  |-  ( ( x  e.  A  |->  B ) : A --> CC  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( (
Re  o.  ( x  e.  A  |->  B ) )  e. MblFn  /\  (
Im  o.  ( x  e.  A  |->  B ) )  e. MblFn ) ) )
53, 4syl 15 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( Re  o.  (
x  e.  A  |->  B ) )  e. MblFn  /\  (
Im  o.  ( x  e.  A  |->  B ) )  e. MblFn ) ) )
6 eqidd 2284 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
7 ref 11597 . . . . . . 7  |-  Re : CC
--> RR
87a1i 10 . . . . . 6  |-  ( ph  ->  Re : CC --> RR )
98feqmptd 5575 . . . . 5  |-  ( ph  ->  Re  =  ( y  e.  CC  |->  ( Re
`  y ) ) )
10 fveq2 5525 . . . . 5  |-  ( y  =  B  ->  (
Re `  y )  =  ( Re `  B ) )
111, 6, 9, 10fmptco 5691 . . . 4  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( Re `  B ) ) )
1211eleq1d 2349 . . 3  |-  ( ph  ->  ( ( Re  o.  ( x  e.  A  |->  B ) )  e. MblFn  <->  ( x  e.  A  |->  ( Re `  B ) )  e. MblFn ) )
13 imf 11598 . . . . . . 7  |-  Im : CC
--> RR
1413a1i 10 . . . . . 6  |-  ( ph  ->  Im : CC --> RR )
1514feqmptd 5575 . . . . 5  |-  ( ph  ->  Im  =  ( y  e.  CC  |->  ( Im
`  y ) ) )
16 fveq2 5525 . . . . 5  |-  ( y  =  B  ->  (
Im `  y )  =  ( Im `  B ) )
171, 6, 15, 16fmptco 5691 . . . 4  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( Im `  B ) ) )
1817eleq1d 2349 . . 3  |-  ( ph  ->  ( ( Im  o.  ( x  e.  A  |->  B ) )  e. MblFn  <->  ( x  e.  A  |->  ( Im `  B ) )  e. MblFn ) )
1912, 18anbi12d 691 . 2  |-  ( ph  ->  ( ( ( Re  o.  ( x  e.  A  |->  B ) )  e. MblFn  /\  ( Im  o.  ( x  e.  A  |->  B ) )  e. MblFn
)  <->  ( ( x  e.  A  |->  ( Re
`  B ) )  e. MblFn  /\  ( x  e.  A  |->  ( Im
`  B ) )  e. MblFn ) ) )
205, 19bitrd 244 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  B ) )  e. MblFn ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684    e. cmpt 4077    o. ccom 4693   -->wf 5251   ` cfv 5255   CCcc 8735   RRcr 8736   Recre 11582   Imcim 11583  MblFncmbf 18969
This theorem is referenced by:  mbfeqa  18998  mbfss  19001  mbfmulc2re  19003  mbfadd  19016  mbfmulc2  19018  mbflim  19023  mbfmul  19081  iblcn  19153  ibladd  19175
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xadd 10453  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-xmet 16373  df-met 16374  df-ovol 18824  df-vol 18825  df-mbf 18975
  Copyright terms: Public domain W3C validator