MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismet2 Unicode version

Theorem ismet2 17914
Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ismet2  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( * Met `  X
)  /\  D :
( X  X.  X
) --> RR ) )

Proof of Theorem ismet2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5571 . 2  |-  ( D  e.  ( Met `  X
)  ->  X  e.  _V )
2 elfvex 5571 . . 3  |-  ( D  e.  ( * Met `  X )  ->  X  e.  _V )
32adantr 451 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  D : ( X  X.  X ) --> RR )  ->  X  e.  _V )
4 simpllr 735 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  D : ( X  X.  X ) --> RR )
5 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  z  e.  X )
6 simplrl 736 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  x  e.  X )
7 fovrn 6006 . . . . . . . . . . . 12  |-  ( ( D : ( X  X.  X ) --> RR 
/\  z  e.  X  /\  x  e.  X
)  ->  ( z D x )  e.  RR )
84, 5, 6, 7syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
z D x )  e.  RR )
9 simplrr 737 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  y  e.  X )
10 fovrn 6006 . . . . . . . . . . . 12  |-  ( ( D : ( X  X.  X ) --> RR 
/\  z  e.  X  /\  y  e.  X
)  ->  ( z D y )  e.  RR )
114, 5, 9, 10syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
z D y )  e.  RR )
12 rexadd 10575 . . . . . . . . . . 11  |-  ( ( ( z D x )  e.  RR  /\  ( z D y )  e.  RR )  ->  ( ( z D x ) + e ( z D y ) )  =  ( ( z D x )  +  ( z D y ) ) )
138, 11, 12syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
( z D x ) + e ( z D y ) )  =  ( ( z D x )  +  ( z D y ) ) )
1413breq2d 4051 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
( x D y )  <_  ( (
z D x ) + e ( z D y ) )  <-> 
( x D y )  <_  ( (
z D x )  +  ( z D y ) ) ) )
1514ralbidva 2572 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( A. z  e.  X  ( x D y )  <_  (
( z D x ) + e ( z D y ) )  <->  A. z  e.  X  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) ) )
1615anbi2d 684 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x ) + e ( z D y ) ) )  <-> 
( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) ) )
17162ralbidva 2596 . . . . . 6  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) ) )
18 simpr 447 . . . . . . . 8  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  D : ( X  X.  X ) --> RR )
19 ressxr 8892 . . . . . . . 8  |-  RR  C_  RR*
20 fss 5413 . . . . . . . 8  |-  ( ( D : ( X  X.  X ) --> RR 
/\  RR  C_  RR* )  ->  D : ( X  X.  X ) --> RR* )
2118, 19, 20sylancl 643 . . . . . . 7  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  D : ( X  X.  X ) -->
RR* )
2221biantrurd 494 . . . . . 6  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) )  <-> 
( D : ( X  X.  X ) -->
RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) ) ) ) )
2317, 22bitr3d 246 . . . . 5  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) + e ( z D y ) ) ) ) ) )
2423pm5.32da 622 . . . 4  |-  ( X  e.  _V  ->  (
( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) )  <-> 
( D : ( X  X.  X ) --> RR  /\  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) + e ( z D y ) ) ) ) ) ) )
25 ancom 437 . . . 4  |-  ( ( D : ( X  X.  X ) --> RR 
/\  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) ) ) )  <->  ( ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) + e ( z D y ) ) ) )  /\  D : ( X  X.  X ) --> RR ) )
2624, 25syl6bb 252 . . 3  |-  ( X  e.  _V  ->  (
( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) )  <-> 
( ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) ) )  /\  D :
( X  X.  X
) --> RR ) ) )
27 ismet 17904 . . 3  |-  ( X  e.  _V  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
28 isxmet 17905 . . . 4  |-  ( X  e.  _V  ->  ( D  e.  ( * Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) + e ( z D y ) ) ) ) ) )
2928anbi1d 685 . . 3  |-  ( X  e.  _V  ->  (
( D  e.  ( * Met `  X
)  /\  D :
( X  X.  X
) --> RR )  <->  ( ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) + e ( z D y ) ) ) )  /\  D : ( X  X.  X ) --> RR ) ) )
3026, 27, 293bitr4d 276 . 2  |-  ( X  e.  _V  ->  ( D  e.  ( Met `  X )  <->  ( D  e.  ( * Met `  X
)  /\  D :
( X  X.  X
) --> RR ) ) )
311, 3, 30pm5.21nii 342 1  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( * Met `  X
)  /\  D :
( X  X.  X
) --> RR ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    X. cxp 4703   -->wf 5267   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753    + caddc 8756   RR*cxr 8882    <_ cle 8884   + ecxad 10466   * Metcxmt 16385   Metcme 16386
This theorem is referenced by:  metxmet  17915  metres2  17943  prdsmet  17950  imasf1omet  17956  xmetresbl  17999  stdbdmet  18078  isbndx  26609
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-mulcl 8815  ax-i2m1 8821
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-xadd 10469  df-xmet 16389  df-met 16390
  Copyright terms: Public domain W3C validator