MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmid2 Unicode version

Theorem ismgmid2 14390
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
mndidcl.b  |-  B  =  ( Base `  G
)
mndidcl.o  |-  .0.  =  ( 0g `  G )
ismgmid2.p  |-  .+  =  ( +g  `  G )
ismgmid2.u  |-  ( ph  ->  U  e.  B )
ismgmid2.l  |-  ( (
ph  /\  x  e.  B )  ->  ( U  .+  x )  =  x )
ismgmid2.r  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  U )  =  x )
Assertion
Ref Expression
ismgmid2  |-  ( ph  ->  U  =  .0.  )
Distinct variable groups:    x,  .+    x,  .0.    x, B    x, G    x, U    ph, x

Proof of Theorem ismgmid2
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 ismgmid2.u . . 3  |-  ( ph  ->  U  e.  B )
2 ismgmid2.l . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( U  .+  x )  =  x )
3 ismgmid2.r . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  U )  =  x )
42, 3jca 518 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
( U  .+  x
)  =  x  /\  ( x  .+  U )  =  x ) )
54ralrimiva 2626 . . 3  |-  ( ph  ->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) )
6 mndidcl.b . . . 4  |-  B  =  ( Base `  G
)
7 mndidcl.o . . . 4  |-  .0.  =  ( 0g `  G )
8 ismgmid2.p . . . 4  |-  .+  =  ( +g  `  G )
9 oveq1 5865 . . . . . . . . 9  |-  ( e  =  U  ->  (
e  .+  x )  =  ( U  .+  x ) )
109eqeq1d 2291 . . . . . . . 8  |-  ( e  =  U  ->  (
( e  .+  x
)  =  x  <->  ( U  .+  x )  =  x ) )
11 oveq2 5866 . . . . . . . . 9  |-  ( e  =  U  ->  (
x  .+  e )  =  ( x  .+  U ) )
1211eqeq1d 2291 . . . . . . . 8  |-  ( e  =  U  ->  (
( x  .+  e
)  =  x  <->  ( x  .+  U )  =  x ) )
1310, 12anbi12d 691 . . . . . . 7  |-  ( e  =  U  ->  (
( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  ( ( U 
.+  x )  =  x  /\  ( x 
.+  U )  =  x ) ) )
1413ralbidv 2563 . . . . . 6  |-  ( e  =  U  ->  ( A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) ) )
1514rspcev 2884 . . . . 5  |-  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x
)  =  x  /\  ( x  .+  U )  =  x ) )  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
161, 5, 15syl2anc 642 . . . 4  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
176, 7, 8, 16ismgmid 14387 . . 3  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
181, 5, 17mpbi2and 887 . 2  |-  ( ph  ->  .0.  =  U )
1918eqcomd 2288 1  |-  ( ph  ->  U  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   0gc0g 13400
This theorem is referenced by:  grpidd  14395  submnd0  14402  frmd0  14482  rngidss  15367  xrs10  16410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-riota 6304  df-0g 13404
  Copyright terms: Public domain W3C validator