MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhm Unicode version

Theorem ismhm 14627
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
ismhm.b  |-  B  =  ( Base `  S
)
ismhm.c  |-  C  =  ( Base `  T
)
ismhm.p  |-  .+  =  ( +g  `  S )
ismhm.q  |-  .+^  =  ( +g  `  T )
ismhm.z  |-  .0.  =  ( 0g `  S )
ismhm.y  |-  Y  =  ( 0g `  T
)
Assertion
Ref Expression
ismhm  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
Distinct variable groups:    x, y, B    x, S, y    x, T, y    x, F, y
Allowed substitution hints:    C( x, y)    .+ ( x, y)    .+^ ( x, y)    Y( x, y)    .0. ( x, y)

Proof of Theorem ismhm
Dummy variables  f 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 14625 . . 3  |- MndHom  =  ( s  e.  Mnd , 
t  e.  Mnd  |->  { f  e.  ( (
Base `  t )  ^m  ( Base `  s
) )  |  ( A. x  e.  (
Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  /\  (
f `  ( 0g `  s ) )  =  ( 0g `  t
) ) } )
21elmpt2cl 6188 . 2  |-  ( F  e.  ( S MndHom  T
)  ->  ( S  e.  Mnd  /\  T  e. 
Mnd ) )
3 fveq2 5632 . . . . . . . 8  |-  ( t  =  T  ->  ( Base `  t )  =  ( Base `  T
) )
4 ismhm.c . . . . . . . 8  |-  C  =  ( Base `  T
)
53, 4syl6eqr 2416 . . . . . . 7  |-  ( t  =  T  ->  ( Base `  t )  =  C )
6 fveq2 5632 . . . . . . . 8  |-  ( s  =  S  ->  ( Base `  s )  =  ( Base `  S
) )
7 ismhm.b . . . . . . . 8  |-  B  =  ( Base `  S
)
86, 7syl6eqr 2416 . . . . . . 7  |-  ( s  =  S  ->  ( Base `  s )  =  B )
95, 8oveqan12rd 6001 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( Base `  t
)  ^m  ( Base `  s ) )  =  ( C  ^m  B
) )
108adantr 451 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( Base `  s
)  =  B )
11 fveq2 5632 . . . . . . . . . . . . 13  |-  ( s  =  S  ->  ( +g  `  s )  =  ( +g  `  S
) )
12 ismhm.p . . . . . . . . . . . . 13  |-  .+  =  ( +g  `  S )
1311, 12syl6eqr 2416 . . . . . . . . . . . 12  |-  ( s  =  S  ->  ( +g  `  s )  = 
.+  )
1413oveqd 5998 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
x ( +g  `  s
) y )  =  ( x  .+  y
) )
1514fveq2d 5636 . . . . . . . . . 10  |-  ( s  =  S  ->  (
f `  ( x
( +g  `  s ) y ) )  =  ( f `  (
x  .+  y )
) )
16 fveq2 5632 . . . . . . . . . . . 12  |-  ( t  =  T  ->  ( +g  `  t )  =  ( +g  `  T
) )
17 ismhm.q . . . . . . . . . . . 12  |-  .+^  =  ( +g  `  T )
1816, 17syl6eqr 2416 . . . . . . . . . . 11  |-  ( t  =  T  ->  ( +g  `  t )  = 
.+^  )
1918oveqd 5998 . . . . . . . . . 10  |-  ( t  =  T  ->  (
( f `  x
) ( +g  `  t
) ( f `  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) ) )
2015, 19eqeqan12d 2381 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
2110, 20raleqbidv 2833 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  A. y  e.  B  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
2210, 21raleqbidv 2833 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
23 fveq2 5632 . . . . . . . . . 10  |-  ( s  =  S  ->  ( 0g `  s )  =  ( 0g `  S
) )
24 ismhm.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  S )
2523, 24syl6eqr 2416 . . . . . . . . 9  |-  ( s  =  S  ->  ( 0g `  s )  =  .0.  )
2625fveq2d 5636 . . . . . . . 8  |-  ( s  =  S  ->  (
f `  ( 0g `  s ) )  =  ( f `  .0.  ) )
27 fveq2 5632 . . . . . . . . 9  |-  ( t  =  T  ->  ( 0g `  t )  =  ( 0g `  T
) )
28 ismhm.y . . . . . . . . 9  |-  Y  =  ( 0g `  T
)
2927, 28syl6eqr 2416 . . . . . . . 8  |-  ( t  =  T  ->  ( 0g `  t )  =  Y )
3026, 29eqeqan12d 2381 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( f `  ( 0g `  s ) )  =  ( 0g
`  t )  <->  ( f `  .0.  )  =  Y ) )
3122, 30anbi12d 691 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) )  <->  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) ) )
329, 31rabeqbidv 2868 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  { f  e.  ( ( Base `  t
)  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) }  =  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) } )
33 ovex 6006 . . . . . 6  |-  ( C  ^m  B )  e. 
_V
3433rabex 4267 . . . . 5  |-  { f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) }  e.  _V
3532, 1, 34ovmpt2a 6104 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  =  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) } )
3635eleq2d 2433 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  ( S MndHom  T )  <->  F  e.  { f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) } ) )
37 fvex 5646 . . . . . . 7  |-  ( Base `  T )  e.  _V
384, 37eqeltri 2436 . . . . . 6  |-  C  e. 
_V
39 fvex 5646 . . . . . . 7  |-  ( Base `  S )  e.  _V
407, 39eqeltri 2436 . . . . . 6  |-  B  e. 
_V
4138, 40elmap 6939 . . . . 5  |-  ( F  e.  ( C  ^m  B )  <->  F : B
--> C )
4241anbi1i 676 . . . 4  |-  ( ( F  e.  ( C  ^m  B )  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) )  /\  ( F `
 .0.  )  =  Y ) )  <->  ( F : B --> C  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) )  /\  ( F `
 .0.  )  =  Y ) ) )
43 fveq1 5631 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  ( x  .+  y ) )  =  ( F `  (
x  .+  y )
) )
44 fveq1 5631 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
45 fveq1 5631 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
4644, 45oveq12d 5999 . . . . . . . 8  |-  ( f  =  F  ->  (
( f `  x
)  .+^  ( f `  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) ) )
4743, 46eqeq12d 2380 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  <->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) ) )
48472ralbidv 2670 . . . . . 6  |-  ( f  =  F  ->  ( A. x  e.  B  A. y  e.  B  ( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) ) )
49 fveq1 5631 . . . . . . 7  |-  ( f  =  F  ->  (
f `  .0.  )  =  ( F `  .0.  ) )
5049eqeq1d 2374 . . . . . 6  |-  ( f  =  F  ->  (
( f `  .0.  )  =  Y  <->  ( F `  .0.  )  =  Y ) )
5148, 50anbi12d 691 . . . . 5  |-  ( f  =  F  ->  (
( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y )  <->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) )  /\  ( F `
 .0.  )  =  Y ) ) )
5251elrab 3009 . . . 4  |-  ( F  e.  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) }  <->  ( F  e.  ( C  ^m  B
)  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
53 3anass 939 . . . 4  |-  ( ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
)  <->  ( F : B
--> C  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
5442, 52, 533bitr4i 268 . . 3  |-  ( F  e.  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) }  <->  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) )
5536, 54syl6bb 252 . 2  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  ( S MndHom  T )  <->  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
562, 55biadan2 623 1  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628   {crab 2632   _Vcvv 2873   -->wf 5354   ` cfv 5358  (class class class)co 5981    ^m cmap 6915   Basecbs 13356   +g cplusg 13416   0gc0g 13610   Mndcmnd 14571   MndHom cmhm 14623
This theorem is referenced by:  mhmf  14630  mhmpropd  14631  mhmlin  14632  mhm0  14633  0mhm  14645  resmhm  14646  resmhm2  14647  resmhm2b  14648  mhmco  14649  prdspjmhm  14653  pwsdiagmhm  14655  pwsco1mhm  14656  pwsco2mhm  14657  frmdup1  14696  ghmmhm  14903  frgpmhm  15284  mulgmhm  15337  dfrhm2  15708  isrhm2d  15716  expmhm  16666  dchrelbas3  20700  xrge0iifmhm  23680  esumcocn  23935  deg1mhm  27032
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-map 6917  df-mhm 14625
  Copyright terms: Public domain W3C validator