MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhm Unicode version

Theorem ismhm 14417
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
ismhm.b  |-  B  =  ( Base `  S
)
ismhm.c  |-  C  =  ( Base `  T
)
ismhm.p  |-  .+  =  ( +g  `  S )
ismhm.q  |-  .+^  =  ( +g  `  T )
ismhm.z  |-  .0.  =  ( 0g `  S )
ismhm.y  |-  Y  =  ( 0g `  T
)
Assertion
Ref Expression
ismhm  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
Distinct variable groups:    x, y, B    x, S, y    x, T, y    x, F, y
Allowed substitution hints:    C( x, y)    .+ ( x, y)    .+^ ( x, y)    Y( x, y)    .0. ( x, y)

Proof of Theorem ismhm
Dummy variables  f 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 14415 . . 3  |- MndHom  =  ( s  e.  Mnd , 
t  e.  Mnd  |->  { f  e.  ( (
Base `  t )  ^m  ( Base `  s
) )  |  ( A. x  e.  (
Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  /\  (
f `  ( 0g `  s ) )  =  ( 0g `  t
) ) } )
21elmpt2cl 6061 . 2  |-  ( F  e.  ( S MndHom  T
)  ->  ( S  e.  Mnd  /\  T  e. 
Mnd ) )
3 fveq2 5525 . . . . . . . 8  |-  ( t  =  T  ->  ( Base `  t )  =  ( Base `  T
) )
4 ismhm.c . . . . . . . 8  |-  C  =  ( Base `  T
)
53, 4syl6eqr 2333 . . . . . . 7  |-  ( t  =  T  ->  ( Base `  t )  =  C )
6 fveq2 5525 . . . . . . . 8  |-  ( s  =  S  ->  ( Base `  s )  =  ( Base `  S
) )
7 ismhm.b . . . . . . . 8  |-  B  =  ( Base `  S
)
86, 7syl6eqr 2333 . . . . . . 7  |-  ( s  =  S  ->  ( Base `  s )  =  B )
95, 8oveqan12rd 5878 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( Base `  t
)  ^m  ( Base `  s ) )  =  ( C  ^m  B
) )
108adantr 451 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( Base `  s
)  =  B )
11 fveq2 5525 . . . . . . . . . . . . 13  |-  ( s  =  S  ->  ( +g  `  s )  =  ( +g  `  S
) )
12 ismhm.p . . . . . . . . . . . . 13  |-  .+  =  ( +g  `  S )
1311, 12syl6eqr 2333 . . . . . . . . . . . 12  |-  ( s  =  S  ->  ( +g  `  s )  = 
.+  )
1413oveqd 5875 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
x ( +g  `  s
) y )  =  ( x  .+  y
) )
1514fveq2d 5529 . . . . . . . . . 10  |-  ( s  =  S  ->  (
f `  ( x
( +g  `  s ) y ) )  =  ( f `  (
x  .+  y )
) )
16 fveq2 5525 . . . . . . . . . . . 12  |-  ( t  =  T  ->  ( +g  `  t )  =  ( +g  `  T
) )
17 ismhm.q . . . . . . . . . . . 12  |-  .+^  =  ( +g  `  T )
1816, 17syl6eqr 2333 . . . . . . . . . . 11  |-  ( t  =  T  ->  ( +g  `  t )  = 
.+^  )
1918oveqd 5875 . . . . . . . . . 10  |-  ( t  =  T  ->  (
( f `  x
) ( +g  `  t
) ( f `  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) ) )
2015, 19eqeqan12d 2298 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
2110, 20raleqbidv 2748 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  A. y  e.  B  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
2210, 21raleqbidv 2748 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
23 fveq2 5525 . . . . . . . . . 10  |-  ( s  =  S  ->  ( 0g `  s )  =  ( 0g `  S
) )
24 ismhm.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  S )
2523, 24syl6eqr 2333 . . . . . . . . 9  |-  ( s  =  S  ->  ( 0g `  s )  =  .0.  )
2625fveq2d 5529 . . . . . . . 8  |-  ( s  =  S  ->  (
f `  ( 0g `  s ) )  =  ( f `  .0.  ) )
27 fveq2 5525 . . . . . . . . 9  |-  ( t  =  T  ->  ( 0g `  t )  =  ( 0g `  T
) )
28 ismhm.y . . . . . . . . 9  |-  Y  =  ( 0g `  T
)
2927, 28syl6eqr 2333 . . . . . . . 8  |-  ( t  =  T  ->  ( 0g `  t )  =  Y )
3026, 29eqeqan12d 2298 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( f `  ( 0g `  s ) )  =  ( 0g
`  t )  <->  ( f `  .0.  )  =  Y ) )
3122, 30anbi12d 691 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) )  <->  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) ) )
329, 31rabeqbidv 2783 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  { f  e.  ( ( Base `  t
)  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) }  =  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) } )
33 ovex 5883 . . . . . 6  |-  ( C  ^m  B )  e. 
_V
3433rabex 4165 . . . . 5  |-  { f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) }  e.  _V
3532, 1, 34ovmpt2a 5978 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  =  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) } )
3635eleq2d 2350 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  ( S MndHom  T )  <->  F  e.  { f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) } ) )
37 fvex 5539 . . . . . . 7  |-  ( Base `  T )  e.  _V
384, 37eqeltri 2353 . . . . . 6  |-  C  e. 
_V
39 fvex 5539 . . . . . . 7  |-  ( Base `  S )  e.  _V
407, 39eqeltri 2353 . . . . . 6  |-  B  e. 
_V
4138, 40elmap 6796 . . . . 5  |-  ( F  e.  ( C  ^m  B )  <->  F : B
--> C )
4241anbi1i 676 . . . 4  |-  ( ( F  e.  ( C  ^m  B )  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) )  /\  ( F `
 .0.  )  =  Y ) )  <->  ( F : B --> C  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) )  /\  ( F `
 .0.  )  =  Y ) ) )
43 fveq1 5524 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  ( x  .+  y ) )  =  ( F `  (
x  .+  y )
) )
44 fveq1 5524 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
45 fveq1 5524 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
4644, 45oveq12d 5876 . . . . . . . 8  |-  ( f  =  F  ->  (
( f `  x
)  .+^  ( f `  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) ) )
4743, 46eqeq12d 2297 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  <->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) ) )
48472ralbidv 2585 . . . . . 6  |-  ( f  =  F  ->  ( A. x  e.  B  A. y  e.  B  ( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) ) )
49 fveq1 5524 . . . . . . 7  |-  ( f  =  F  ->  (
f `  .0.  )  =  ( F `  .0.  ) )
5049eqeq1d 2291 . . . . . 6  |-  ( f  =  F  ->  (
( f `  .0.  )  =  Y  <->  ( F `  .0.  )  =  Y ) )
5148, 50anbi12d 691 . . . . 5  |-  ( f  =  F  ->  (
( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y )  <->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) )  /\  ( F `
 .0.  )  =  Y ) ) )
5251elrab 2923 . . . 4  |-  ( F  e.  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) }  <->  ( F  e.  ( C  ^m  B
)  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
53 3anass 938 . . . 4  |-  ( ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
)  <->  ( F : B
--> C  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
5442, 52, 533bitr4i 268 . . 3  |-  ( F  e.  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) }  <->  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) )
5536, 54syl6bb 252 . 2  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  ( S MndHom  T )  <->  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
562, 55biadan2 623 1  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Mndcmnd 14361   MndHom cmhm 14413
This theorem is referenced by:  mhmf  14420  mhmpropd  14421  mhmlin  14422  mhm0  14423  0mhm  14435  resmhm  14436  resmhm2  14437  resmhm2b  14438  mhmco  14439  prdspjmhm  14443  pwsdiagmhm  14445  pwsco1mhm  14446  pwsco2mhm  14447  frmdup1  14486  ghmmhm  14693  frgpmhm  15074  mulgmhm  15127  dfrhm2  15498  isrhm2d  15506  expmhm  16449  dchrelbas3  20477  xrge0iifmhm  23321  esumcocn  23448  deg1mhm  27526
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-mhm 14415
  Copyright terms: Public domain W3C validator