MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismred2 Unicode version

Theorem ismred2 13505
Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Hypotheses
Ref Expression
ismred2.ss  |-  ( ph  ->  C  C_  ~P X
)
ismred2.in  |-  ( (
ph  /\  s  C_  C )  ->  ( X  i^i  |^| s )  e.  C )
Assertion
Ref Expression
ismred2  |-  ( ph  ->  C  e.  (Moore `  X ) )
Distinct variable groups:    ph, s    C, s    X, s

Proof of Theorem ismred2
StepHypRef Expression
1 ismred2.ss . 2  |-  ( ph  ->  C  C_  ~P X
)
2 eqid 2283 . . . 4  |-  (/)  =  (/)
3 rint0 3902 . . . 4  |-  ( (/)  =  (/)  ->  ( X  i^i  |^| (/) )  =  X )
42, 3ax-mp 8 . . 3  |-  ( X  i^i  |^| (/) )  =  X
5 0ss 3483 . . . 4  |-  (/)  C_  C
6 0ex 4150 . . . . 5  |-  (/)  e.  _V
7 sseq1 3199 . . . . . . 7  |-  ( s  =  (/)  ->  ( s 
C_  C  <->  (/)  C_  C
) )
87anbi2d 684 . . . . . 6  |-  ( s  =  (/)  ->  ( (
ph  /\  s  C_  C )  <->  ( ph  /\  (/)  C_  C ) ) )
9 inteq 3865 . . . . . . . 8  |-  ( s  =  (/)  ->  |^| s  =  |^| (/) )
109ineq2d 3370 . . . . . . 7  |-  ( s  =  (/)  ->  ( X  i^i  |^| s )  =  ( X  i^i  |^| (/) ) )
1110eleq1d 2349 . . . . . 6  |-  ( s  =  (/)  ->  ( ( X  i^i  |^| s
)  e.  C  <->  ( X  i^i  |^| (/) )  e.  C
) )
128, 11imbi12d 311 . . . . 5  |-  ( s  =  (/)  ->  ( ( ( ph  /\  s  C_  C )  ->  ( X  i^i  |^| s )  e.  C )  <->  ( ( ph  /\  (/)  C_  C )  ->  ( X  i^i  |^| (/) )  e.  C ) ) )
13 ismred2.in . . . . 5  |-  ( (
ph  /\  s  C_  C )  ->  ( X  i^i  |^| s )  e.  C )
146, 12, 13vtocl 2838 . . . 4  |-  ( (
ph  /\  (/)  C_  C
)  ->  ( X  i^i  |^| (/) )  e.  C
)
155, 14mpan2 652 . . 3  |-  ( ph  ->  ( X  i^i  |^| (/) )  e.  C )
164, 15syl5eqelr 2368 . 2  |-  ( ph  ->  X  e.  C )
17 simp2 956 . . . . 5  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  -> 
s  C_  C )
1813ad2ant1 976 . . . . 5  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  ->  C  C_  ~P X )
1917, 18sstrd 3189 . . . 4  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  -> 
s  C_  ~P X
)
20 simp3 957 . . . 4  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  -> 
s  =/=  (/) )
21 rintn0 3992 . . . 4  |-  ( ( s  C_  ~P X  /\  s  =/=  (/) )  -> 
( X  i^i  |^| s )  =  |^| s )
2219, 20, 21syl2anc 642 . . 3  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  -> 
( X  i^i  |^| s )  =  |^| s )
23133adant3 975 . . 3  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  -> 
( X  i^i  |^| s )  e.  C
)
2422, 23eqeltrrd 2358 . 2  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  ->  |^| s  e.  C
)
251, 16, 24ismred 13504 1  |-  ( ph  ->  C  e.  (Moore `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   |^|cint 3862   ` cfv 5255  Moorecmre 13484
This theorem is referenced by:  isacs1i  13559  mreacs  13560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-mre 13488
  Copyright terms: Public domain W3C validator