MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2d Unicode version

Theorem ismri2d 13634
Description: Criterion for a subset of the base set in a Moore system to be independent. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2.1  |-  N  =  (mrCls `  A )
ismri2.2  |-  I  =  (mrInd `  A )
ismri2d.3  |-  ( ph  ->  A  e.  (Moore `  X ) )
ismri2d.4  |-  ( ph  ->  S  C_  X )
Assertion
Ref Expression
ismri2d  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  {
x } ) ) ) )
Distinct variable groups:    x, A    x, S
Allowed substitution hints:    ph( x)    I( x)    N( x)    X( x)

Proof of Theorem ismri2d
StepHypRef Expression
1 ismri2d.3 . 2  |-  ( ph  ->  A  e.  (Moore `  X ) )
2 ismri2d.4 . 2  |-  ( ph  ->  S  C_  X )
3 ismri2.1 . . 3  |-  N  =  (mrCls `  A )
4 ismri2.2 . . 3  |-  I  =  (mrInd `  A )
53, 4ismri2 13633 . 2  |-  ( ( A  e.  (Moore `  X )  /\  S  C_  X )  ->  ( S  e.  I  <->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x }
) ) ) )
61, 2, 5syl2anc 642 1  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  {
x } ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    = wceq 1642    e. wcel 1710   A.wral 2619    \ cdif 3225    C_ wss 3228   {csn 3716   ` cfv 5337  Moorecmre 13583  mrClscmrc 13584  mrIndcmri 13585
This theorem is referenced by:  ismri2dd  13635  ismri2dad  13638  mrieqvd  13639  mrieqv2d  13640  mrissmrid  13642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-iota 5301  df-fun 5339  df-fv 5345  df-mre 13587  df-mri 13589
  Copyright terms: Public domain W3C validator