MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isms Structured version   Unicode version

Theorem isms 18484
Description: Express the predicate " <. X ,  D >. is a metric space" with underlying set  X and distance function  D. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
isms  |-  ( K  e.  MetSp 
<->  ( K  e.  * MetSp  /\  D  e.  ( Met `  X ) ) )

Proof of Theorem isms
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq2 5731 . . . . 5  |-  ( f  =  K  ->  ( dist `  f )  =  ( dist `  K
) )
2 fveq2 5731 . . . . . . 7  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
3 isms.x . . . . . . 7  |-  X  =  ( Base `  K
)
42, 3syl6eqr 2488 . . . . . 6  |-  ( f  =  K  ->  ( Base `  f )  =  X )
54, 4xpeq12d 4906 . . . . 5  |-  ( f  =  K  ->  (
( Base `  f )  X.  ( Base `  f
) )  =  ( X  X.  X ) )
61, 5reseq12d 5150 . . . 4  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  ( ( dist `  K )  |`  ( X  X.  X ) ) )
7 isms.d . . . 4  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
86, 7syl6eqr 2488 . . 3  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  D )
94fveq2d 5735 . . 3  |-  ( f  =  K  ->  ( Met `  ( Base `  f
) )  =  ( Met `  X ) )
108, 9eleq12d 2506 . 2  |-  ( f  =  K  ->  (
( ( dist `  f
)  |`  ( ( Base `  f )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f
) )  <->  D  e.  ( Met `  X ) ) )
11 df-ms 18356 . 2  |-  MetSp  =  {
f  e.  * MetSp  |  ( ( dist `  f
)  |`  ( ( Base `  f )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f
) ) }
1210, 11elrab2 3096 1  |-  ( K  e.  MetSp 
<->  ( K  e.  * MetSp  /\  D  e.  ( Met `  X ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    X. cxp 4879    |` cres 4883   ` cfv 5457   Basecbs 13474   distcds 13543   TopOpenctopn 13654   Metcme 16692   *
MetSpcxme 18352   MetSpcmt 18353
This theorem is referenced by:  isms2  18485  msxms  18489  mspropd  18509  setsms  18515  tmsms  18522  imasf1oms  18525  ressms  18561  prdsms  18566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-xp 4887  df-res 4893  df-iota 5421  df-fv 5465  df-ms 18356
  Copyright terms: Public domain W3C validator