Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtycnv Unicode version

Theorem ismtycnv 26629
Description: The inverse of an isometry is an isometry. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ismtycnv  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  ->  `' F  e.  ( N  Ismty  M ) ) )

Proof of Theorem ismtycnv
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 5501 . . . . 5  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
21adantr 451 . . . 4  |-  ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) )  ->  `' F : Y -1-1-onto-> X )
3 f1ocnvdm 5812 . . . . . . . . . . 11  |-  ( ( F : X -1-1-onto-> Y  /\  u  e.  Y )  ->  ( `' F `  u )  e.  X
)
43ex 423 . . . . . . . . . 10  |-  ( F : X -1-1-onto-> Y  ->  ( u  e.  Y  ->  ( `' F `  u )  e.  X ) )
5 f1ocnvdm 5812 . . . . . . . . . . 11  |-  ( ( F : X -1-1-onto-> Y  /\  v  e.  Y )  ->  ( `' F `  v )  e.  X
)
65ex 423 . . . . . . . . . 10  |-  ( F : X -1-1-onto-> Y  ->  ( v  e.  Y  ->  ( `' F `  v )  e.  X ) )
74, 6anim12d 546 . . . . . . . . 9  |-  ( F : X -1-1-onto-> Y  ->  ( (
u  e.  Y  /\  v  e.  Y )  ->  ( ( `' F `  u )  e.  X  /\  ( `' F `  v )  e.  X
) ) )
87adantr 451 . . . . . . . 8  |-  ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) )  -> 
( ( u  e.  Y  /\  v  e.  Y )  ->  (
( `' F `  u )  e.  X  /\  ( `' F `  v )  e.  X
) ) )
98imdistani 671 . . . . . . 7  |-  ( ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( F : X
-1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x
) N ( F `
 y ) ) )  /\  ( ( `' F `  u )  e.  X  /\  ( `' F `  v )  e.  X ) ) )
10 oveq1 5881 . . . . . . . . . . 11  |-  ( x  =  ( `' F `  u )  ->  (
x M y )  =  ( ( `' F `  u ) M y ) )
11 fveq2 5541 . . . . . . . . . . . 12  |-  ( x  =  ( `' F `  u )  ->  ( F `  x )  =  ( F `  ( `' F `  u ) ) )
1211oveq1d 5889 . . . . . . . . . . 11  |-  ( x  =  ( `' F `  u )  ->  (
( F `  x
) N ( F `
 y ) )  =  ( ( F `
 ( `' F `  u ) ) N ( F `  y
) ) )
1310, 12eqeq12d 2310 . . . . . . . . . 10  |-  ( x  =  ( `' F `  u )  ->  (
( x M y )  =  ( ( F `  x ) N ( F `  y ) )  <->  ( ( `' F `  u ) M y )  =  ( ( F `  ( `' F `  u ) ) N ( F `
 y ) ) ) )
14 oveq2 5882 . . . . . . . . . . 11  |-  ( y  =  ( `' F `  v )  ->  (
( `' F `  u ) M y )  =  ( ( `' F `  u ) M ( `' F `  v ) ) )
15 fveq2 5541 . . . . . . . . . . . 12  |-  ( y  =  ( `' F `  v )  ->  ( F `  y )  =  ( F `  ( `' F `  v ) ) )
1615oveq2d 5890 . . . . . . . . . . 11  |-  ( y  =  ( `' F `  v )  ->  (
( F `  ( `' F `  u ) ) N ( F `
 y ) )  =  ( ( F `
 ( `' F `  u ) ) N ( F `  ( `' F `  v ) ) ) )
1714, 16eqeq12d 2310 . . . . . . . . . 10  |-  ( y  =  ( `' F `  v )  ->  (
( ( `' F `  u ) M y )  =  ( ( F `  ( `' F `  u ) ) N ( F `
 y ) )  <-> 
( ( `' F `  u ) M ( `' F `  v ) )  =  ( ( F `  ( `' F `  u ) ) N ( F `
 ( `' F `  v ) ) ) ) )
1813, 17rspc2v 2903 . . . . . . . . 9  |-  ( ( ( `' F `  u )  e.  X  /\  ( `' F `  v )  e.  X
)  ->  ( A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) )  ->  (
( `' F `  u ) M ( `' F `  v ) )  =  ( ( F `  ( `' F `  u ) ) N ( F `
 ( `' F `  v ) ) ) ) )
1918impcom 419 . . . . . . . 8  |-  ( ( A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) )  /\  ( ( `' F `  u )  e.  X  /\  ( `' F `  v )  e.  X
) )  ->  (
( `' F `  u ) M ( `' F `  v ) )  =  ( ( F `  ( `' F `  u ) ) N ( F `
 ( `' F `  v ) ) ) )
2019adantll 694 . . . . . . 7  |-  ( ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  /\  ( ( `' F `  u )  e.  X  /\  ( `' F `  v )  e.  X ) )  ->  ( ( `' F `  u ) M ( `' F `  v ) )  =  ( ( F `  ( `' F `  u ) ) N ( F `
 ( `' F `  v ) ) ) )
219, 20syl 15 . . . . . 6  |-  ( ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( `' F `  u ) M ( `' F `  v ) )  =  ( ( F `  ( `' F `  u ) ) N ( F `
 ( `' F `  v ) ) ) )
22 f1ocnvfv2 5809 . . . . . . . . 9  |-  ( ( F : X -1-1-onto-> Y  /\  u  e.  Y )  ->  ( F `  ( `' F `  u ) )  =  u )
2322adantrr 697 . . . . . . . 8  |-  ( ( F : X -1-1-onto-> Y  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  ( F `  ( `' F `  u )
)  =  u )
24 f1ocnvfv2 5809 . . . . . . . . 9  |-  ( ( F : X -1-1-onto-> Y  /\  v  e.  Y )  ->  ( F `  ( `' F `  v ) )  =  v )
2524adantrl 696 . . . . . . . 8  |-  ( ( F : X -1-1-onto-> Y  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  ( F `  ( `' F `  v )
)  =  v )
2623, 25oveq12d 5892 . . . . . . 7  |-  ( ( F : X -1-1-onto-> Y  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  (
( F `  ( `' F `  u ) ) N ( F `
 ( `' F `  v ) ) )  =  ( u N v ) )
2726adantlr 695 . . . . . 6  |-  ( ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( F `  ( `' F `  u ) ) N ( F `
 ( `' F `  v ) ) )  =  ( u N v ) )
2821, 27eqtr2d 2329 . . . . 5  |-  ( ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( u N v )  =  ( ( `' F `  u ) M ( `' F `  v ) ) )
2928ralrimivva 2648 . . . 4  |-  ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) )  ->  A. u  e.  Y  A. v  e.  Y  ( u N v )  =  ( ( `' F `  u ) M ( `' F `  v ) ) )
302, 29jca 518 . . 3  |-  ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) )  -> 
( `' F : Y
-1-1-onto-> X  /\  A. u  e.  Y  A. v  e.  Y  ( u N v )  =  ( ( `' F `  u ) M ( `' F `  v ) ) ) )
3130a1i 10 . 2  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
) )  ->  (
( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  ->  ( `' F : Y -1-1-onto-> X  /\  A. u  e.  Y  A. v  e.  Y  ( u N v )  =  ( ( `' F `  u ) M ( `' F `  v ) ) ) ) )
32 isismty 26628 . 2  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
33 isismty 26628 . . 3  |-  ( ( N  e.  ( * Met `  Y )  /\  M  e.  ( * Met `  X
) )  ->  ( `' F  e.  ( N  Ismty  M )  <->  ( `' F : Y -1-1-onto-> X  /\  A. u  e.  Y  A. v  e.  Y  ( u N v )  =  ( ( `' F `  u ) M ( `' F `  v ) ) ) ) )
3433ancoms 439 . 2  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
) )  ->  ( `' F  e.  ( N  Ismty  M )  <->  ( `' F : Y -1-1-onto-> X  /\  A. u  e.  Y  A. v  e.  Y  ( u N v )  =  ( ( `' F `  u ) M ( `' F `  v ) ) ) ) )
3531, 32, 343imtr4d 259 1  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  ->  `' F  e.  ( N  Ismty  M ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   `'ccnv 4704   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   * Metcxmt 16385    Ismty cismty 26625
This theorem is referenced by:  ismtyhmeolem  26631  ismtyhmeo  26632  ismtybnd  26634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-xr 8887  df-xmet 16389  df-ismty 26626
  Copyright terms: Public domain W3C validator