Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs Unicode version

Theorem isnacs 26882
Description: Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
isnacs  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) )
Distinct variable groups:    C, g,
s    g, F, s    g, X, s

Proof of Theorem isnacs
Dummy variables  c  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5571 . 2  |-  ( C  e.  (NoeACS `  X
)  ->  X  e.  _V )
2 elfvex 5571 . . 3  |-  ( C  e.  (ACS `  X
)  ->  X  e.  _V )
32adantr 451 . 2  |-  ( ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g ) )  ->  X  e.  _V )
4 fveq2 5541 . . . . . 6  |-  ( x  =  X  ->  (ACS `  x )  =  (ACS
`  X ) )
5 pweq 3641 . . . . . . . . 9  |-  ( x  =  X  ->  ~P x  =  ~P X
)
65ineq1d 3382 . . . . . . . 8  |-  ( x  =  X  ->  ( ~P x  i^i  Fin )  =  ( ~P X  i^i  Fin ) )
76rexeqdv 2756 . . . . . . 7  |-  ( x  =  X  ->  ( E. g  e.  ( ~P x  i^i  Fin )
s  =  ( (mrCls `  c ) `  g
)  <->  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) ) )
87ralbidv 2576 . . . . . 6  |-  ( x  =  X  ->  ( A. s  e.  c  E. g  e.  ( ~P x  i^i  Fin )
s  =  ( (mrCls `  c ) `  g
)  <->  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) ) )
94, 8rabeqbidv 2796 . . . . 5  |-  ( x  =  X  ->  { c  e.  (ACS `  x
)  |  A. s  e.  c  E. g  e.  ( ~P x  i^i 
Fin ) s  =  ( (mrCls `  c
) `  g ) }  =  { c  e.  (ACS `  X )  |  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) } )
10 df-nacs 26881 . . . . 5  |- NoeACS  =  ( x  e.  _V  |->  { c  e.  (ACS `  x )  |  A. s  e.  c  E. g  e.  ( ~P x  i^i  Fin ) s  =  ( (mrCls `  c ) `  g
) } )
11 fvex 5555 . . . . . 6  |-  (ACS `  X )  e.  _V
1211rabex 4181 . . . . 5  |-  { c  e.  (ACS `  X
)  |  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) }  e.  _V
139, 10, 12fvmpt 5618 . . . 4  |-  ( X  e.  _V  ->  (NoeACS `  X )  =  {
c  e.  (ACS `  X )  |  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g
) } )
1413eleq2d 2363 . . 3  |-  ( X  e.  _V  ->  ( C  e.  (NoeACS `  X
)  <->  C  e.  { c  e.  (ACS `  X
)  |  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) } ) )
15 fveq2 5541 . . . . . . . . 9  |-  ( c  =  C  ->  (mrCls `  c )  =  (mrCls `  C ) )
16 isnacs.f . . . . . . . . 9  |-  F  =  (mrCls `  C )
1715, 16syl6eqr 2346 . . . . . . . 8  |-  ( c  =  C  ->  (mrCls `  c )  =  F )
1817fveq1d 5543 . . . . . . 7  |-  ( c  =  C  ->  (
(mrCls `  c ) `  g )  =  ( F `  g ) )
1918eqeq2d 2307 . . . . . 6  |-  ( c  =  C  ->  (
s  =  ( (mrCls `  c ) `  g
)  <->  s  =  ( F `  g ) ) )
2019rexbidv 2577 . . . . 5  |-  ( c  =  C  ->  ( E. g  e.  ( ~P X  i^i  Fin )
s  =  ( (mrCls `  c ) `  g
)  <->  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g ) ) )
2120raleqbi1dv 2757 . . . 4  |-  ( c  =  C  ->  ( A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( (mrCls `  c ) `  g
)  <->  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) )
2221elrab 2936 . . 3  |-  ( C  e.  { c  e.  (ACS `  X )  |  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) }  <->  ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) )
2314, 22syl6bb 252 . 2  |-  ( X  e.  _V  ->  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) ) )
241, 3, 23pm5.21nii 342 1  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    i^i cin 3164   ~Pcpw 3638   ` cfv 5271   Fincfn 6879  mrClscmrc 13501  ACScacs 13503  NoeACScnacs 26880
This theorem is referenced by:  nacsfg  26883  isnacs2  26884  isnacs3  26888  islnr3  27422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-nacs 26881
  Copyright terms: Public domain W3C validator