Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs3 Unicode version

Theorem isnacs3 26785
Description: A choice-free order equivalent to the Noetherian condition on a closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
isnacs3  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  s ) ) )
Distinct variable groups:    C, s    X, s

Proof of Theorem isnacs3
Dummy variables  g  h  i  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nacsacs 26784 . . . 4  |-  ( C  e.  (NoeACS `  X
)  ->  C  e.  (ACS `  X ) )
2 acsmre 13554 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  C  e.  (Moore `  X ) )
31, 2syl 15 . . 3  |-  ( C  e.  (NoeACS `  X
)  ->  C  e.  (Moore `  X ) )
4 simpll 730 . . . . . . . 8  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  C  e.  (NoeACS `  X ) )
51ad2antrr 706 . . . . . . . . 9  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  C  e.  (ACS `  X ) )
6 elpwi 3633 . . . . . . . . . 10  |-  ( s  e.  ~P C  -> 
s  C_  C )
76ad2antlr 707 . . . . . . . . 9  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  s  C_  C )
8 simpr 447 . . . . . . . . 9  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  (toInc `  s
)  e. Dirset )
9 acsdrsel 14270 . . . . . . . . 9  |-  ( ( C  e.  (ACS `  X )  /\  s  C_  C  /\  (toInc `  s )  e. Dirset )  ->  U. s  e.  C
)
105, 7, 8, 9syl3anc 1182 . . . . . . . 8  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  U. s  e.  C )
11 eqid 2283 . . . . . . . . 9  |-  (mrCls `  C )  =  (mrCls `  C )
1211nacsfg 26780 . . . . . . . 8  |-  ( ( C  e.  (NoeACS `  X )  /\  U. s  e.  C )  ->  E. g  e.  ( ~P X  i^i  Fin ) U. s  =  ( (mrCls `  C ) `  g ) )
134, 10, 12syl2anc 642 . . . . . . 7  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  E. g  e.  ( ~P X  i^i  Fin ) U. s  =  ( (mrCls `  C
) `  g )
)
1411mrefg2 26782 . . . . . . . . 9  |-  ( C  e.  (Moore `  X
)  ->  ( E. g  e.  ( ~P X  i^i  Fin ) U. s  =  ( (mrCls `  C ) `  g
)  <->  E. g  e.  ( ~P U. s  i^i 
Fin ) U. s  =  ( (mrCls `  C ) `  g
) ) )
153, 14syl 15 . . . . . . . 8  |-  ( C  e.  (NoeACS `  X
)  ->  ( E. g  e.  ( ~P X  i^i  Fin ) U. s  =  ( (mrCls `  C ) `  g
)  <->  E. g  e.  ( ~P U. s  i^i 
Fin ) U. s  =  ( (mrCls `  C ) `  g
) ) )
1615ad2antrr 706 . . . . . . 7  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  ( E. g  e.  ( ~P X  i^i  Fin ) U. s  =  ( (mrCls `  C ) `  g
)  <->  E. g  e.  ( ~P U. s  i^i 
Fin ) U. s  =  ( (mrCls `  C ) `  g
) ) )
1713, 16mpbid 201 . . . . . 6  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  E. g  e.  ( ~P U. s  i^i  Fin ) U. s  =  ( (mrCls `  C ) `  g
) )
18 elfpw 7157 . . . . . . . . 9  |-  ( g  e.  ( ~P U. s  i^i  Fin )  <->  ( g  C_ 
U. s  /\  g  e.  Fin ) )
19 fissuni 7160 . . . . . . . . 9  |-  ( ( g  C_  U. s  /\  g  e.  Fin )  ->  E. h  e.  ( ~P s  i^i  Fin ) g  C_  U. h
)
2018, 19sylbi 187 . . . . . . . 8  |-  ( g  e.  ( ~P U. s  i^i  Fin )  ->  E. h  e.  ( ~P s  i^i  Fin )
g  C_  U. h
)
21 elfpw 7157 . . . . . . . . . . . 12  |-  ( h  e.  ( ~P s  i^i  Fin )  <->  ( h  C_  s  /\  h  e. 
Fin ) )
22 ipodrsfi 14266 . . . . . . . . . . . . 13  |-  ( ( (toInc `  s )  e. Dirset  /\  h  C_  s  /\  h  e.  Fin )  ->  E. i  e.  s 
U. h  C_  i
)
23223expb 1152 . . . . . . . . . . . 12  |-  ( ( (toInc `  s )  e. Dirset  /\  ( h  C_  s  /\  h  e.  Fin ) )  ->  E. i  e.  s  U. h  C_  i )
2421, 23sylan2b 461 . . . . . . . . . . 11  |-  ( ( (toInc `  s )  e. Dirset  /\  h  e.  ( ~P s  i^i  Fin ) )  ->  E. i  e.  s  U. h  C_  i )
25 sstr 3187 . . . . . . . . . . . . . . 15  |-  ( ( g  C_  U. h  /\  U. h  C_  i
)  ->  g  C_  i )
2625ancoms 439 . . . . . . . . . . . . . 14  |-  ( ( U. h  C_  i  /\  g  C_  U. h
)  ->  g  C_  i )
27 simpr 447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (
i  e.  s  /\  g  C_  i ) )  /\  U. s  =  ( (mrCls `  C
) `  g )
)  ->  U. s  =  ( (mrCls `  C ) `  g
) )
283ad2antrr 706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  ( i  e.  s  /\  g  C_  i
) )  ->  C  e.  (Moore `  X )
)
29 simprr 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  ( i  e.  s  /\  g  C_  i
) )  ->  g  C_  i )
306ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  ( i  e.  s  /\  g  C_  i
) )  ->  s  C_  C )
31 simprl 732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  ( i  e.  s  /\  g  C_  i
) )  ->  i  e.  s )
3230, 31sseldd 3181 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  ( i  e.  s  /\  g  C_  i
) )  ->  i  e.  C )
3311mrcsscl 13522 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( C  e.  (Moore `  X )  /\  g  C_  i  /\  i  e.  C )  ->  (
(mrCls `  C ) `  g )  C_  i
)
3428, 29, 32, 33syl3anc 1182 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  ( i  e.  s  /\  g  C_  i
) )  ->  (
(mrCls `  C ) `  g )  C_  i
)
3534adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (
i  e.  s  /\  g  C_  i ) )  /\  U. s  =  ( (mrCls `  C
) `  g )
)  ->  ( (mrCls `  C ) `  g
)  C_  i )
3627, 35eqsstrd 3212 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (
i  e.  s  /\  g  C_  i ) )  /\  U. s  =  ( (mrCls `  C
) `  g )
)  ->  U. s  C_  i )
37 simplrl 736 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (
i  e.  s  /\  g  C_  i ) )  /\  U. s  =  ( (mrCls `  C
) `  g )
)  ->  i  e.  s )
38 elssuni 3855 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  s  ->  i  C_ 
U. s )
3937, 38syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (
i  e.  s  /\  g  C_  i ) )  /\  U. s  =  ( (mrCls `  C
) `  g )
)  ->  i  C_  U. s )
4036, 39eqssd 3196 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (
i  e.  s  /\  g  C_  i ) )  /\  U. s  =  ( (mrCls `  C
) `  g )
)  ->  U. s  =  i )
4140, 37eqeltrd 2357 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (
i  e.  s  /\  g  C_  i ) )  /\  U. s  =  ( (mrCls `  C
) `  g )
)  ->  U. s  e.  s )
4241ex 423 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  ( i  e.  s  /\  g  C_  i
) )  ->  ( U. s  =  (
(mrCls `  C ) `  g )  ->  U. s  e.  s ) )
4342expr 598 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  i  e.  s )  ->  ( g  C_  i  ->  ( U. s  =  ( (mrCls `  C
) `  g )  ->  U. s  e.  s ) ) )
4426, 43syl5 28 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  i  e.  s )  ->  ( ( U. h  C_  i  /\  g  C_  U. h )  ->  ( U. s  =  (
(mrCls `  C ) `  g )  ->  U. s  e.  s ) ) )
4544exp3a 425 . . . . . . . . . . . 12  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  i  e.  s )  ->  ( U. h  C_  i  ->  ( g  C_  U. h  ->  ( U. s  =  ( (mrCls `  C ) `  g
)  ->  U. s  e.  s ) ) ) )
4645rexlimdva 2667 . . . . . . . . . . 11  |-  ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  -> 
( E. i  e.  s  U. h  C_  i  ->  ( g  C_  U. h  ->  ( U. s  =  ( (mrCls `  C ) `  g
)  ->  U. s  e.  s ) ) ) )
4724, 46syl5 28 . . . . . . . . . 10  |-  ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  -> 
( ( (toInc `  s )  e. Dirset  /\  h  e.  ( ~P s  i^i 
Fin ) )  -> 
( g  C_  U. h  ->  ( U. s  =  ( (mrCls `  C
) `  g )  ->  U. s  e.  s ) ) ) )
4847expdimp 426 . . . . . . . . 9  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  ( h  e.  ( ~P s  i^i 
Fin )  ->  (
g  C_  U. h  ->  ( U. s  =  ( (mrCls `  C
) `  g )  ->  U. s  e.  s ) ) ) )
4948rexlimdv 2666 . . . . . . . 8  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  ( E. h  e.  ( ~P s  i^i  Fin ) g 
C_  U. h  ->  ( U. s  =  (
(mrCls `  C ) `  g )  ->  U. s  e.  s ) ) )
5020, 49syl5 28 . . . . . . 7  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  ( g  e.  ( ~P U. s  i^i  Fin )  ->  ( U. s  =  (
(mrCls `  C ) `  g )  ->  U. s  e.  s ) ) )
5150rexlimdv 2666 . . . . . 6  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  ( E. g  e.  ( ~P U. s  i^i  Fin ) U. s  =  (
(mrCls `  C ) `  g )  ->  U. s  e.  s ) )
5217, 51mpd 14 . . . . 5  |-  ( ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset
)  ->  U. s  e.  s )
5352ex 423 . . . 4  |-  ( ( C  e.  (NoeACS `  X )  /\  s  e.  ~P C )  -> 
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )
5453ralrimiva 2626 . . 3  |-  ( C  e.  (NoeACS `  X
)  ->  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  s ) )
553, 54jca 518 . 2  |-  ( C  e.  (NoeACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  s ) ) )
56 simpl 443 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  ->  C  e.  (Moore `  X
) )
576adantl 452 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  s  e.  ~P C )  -> 
s  C_  C )
5857sseld 3179 . . . . . . 7  |-  ( ( C  e.  (Moore `  X )  /\  s  e.  ~P C )  -> 
( U. s  e.  s  ->  U. s  e.  C ) )
5958imim2d 48 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  s  e.  ~P C )  -> 
( ( (toInc `  s )  e. Dirset  ->  U. s  e.  s )  ->  ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) ) )
6059ralimdva 2621 . . . . 5  |-  ( C  e.  (Moore `  X
)  ->  ( A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s )  ->  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) ) )
6160imp 418 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  ->  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) )
62 isacs3 14277 . . . 4  |-  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) ) )
6356, 61, 62sylanbrc 645 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  ->  C  e.  (ACS `  X
) )
6411mrcid 13515 . . . . . . . . . 10  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  (
(mrCls `  C ) `  t )  =  t )
6564adantlr 695 . . . . . . . . 9  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  ( (mrCls `  C
) `  t )  =  t )
6663adantr 451 . . . . . . . . . 10  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  C  e.  (ACS `  X ) )
67 mress 13495 . . . . . . . . . . 11  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  t  C_  X )
6867adantlr 695 . . . . . . . . . 10  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  t  C_  X )
6911acsficl 14274 . . . . . . . . . 10  |-  ( ( C  e.  (ACS `  X )  /\  t  C_  X )  ->  (
(mrCls `  C ) `  t )  =  U. ( (mrCls `  C ) " ( ~P t  i^i  Fin ) ) )
7066, 68, 69syl2anc 642 . . . . . . . . 9  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  ( (mrCls `  C
) `  t )  =  U. ( (mrCls `  C ) " ( ~P t  i^i  Fin )
) )
7165, 70eqtr3d 2317 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  t  =  U. (
(mrCls `  C ) " ( ~P t  i^i  Fin ) ) )
7211mrcf 13511 . . . . . . . . . . . . 13  |-  ( C  e.  (Moore `  X
)  ->  (mrCls `  C
) : ~P X --> C )
73 ffn 5389 . . . . . . . . . . . . 13  |-  ( (mrCls `  C ) : ~P X
--> C  ->  (mrCls `  C
)  Fn  ~P X
)
7472, 73syl 15 . . . . . . . . . . . 12  |-  ( C  e.  (Moore `  X
)  ->  (mrCls `  C
)  Fn  ~P X
)
7574adantr 451 . . . . . . . . . . 11  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  (mrCls `  C )  Fn  ~P X )
7611mrcss 13518 . . . . . . . . . . . . 13  |-  ( ( C  e.  (Moore `  X )  /\  g  C_  h  /\  h  C_  X )  ->  (
(mrCls `  C ) `  g )  C_  (
(mrCls `  C ) `  h ) )
77763expb 1152 . . . . . . . . . . . 12  |-  ( ( C  e.  (Moore `  X )  /\  (
g  C_  h  /\  h  C_  X ) )  ->  ( (mrCls `  C ) `  g
)  C_  ( (mrCls `  C ) `  h
) )
7877adantlr 695 . . . . . . . . . . 11  |-  ( ( ( C  e.  (Moore `  X )  /\  t  e.  C )  /\  (
g  C_  h  /\  h  C_  X ) )  ->  ( (mrCls `  C ) `  g
)  C_  ( (mrCls `  C ) `  h
) )
79 vex 2791 . . . . . . . . . . . 12  |-  t  e. 
_V
80 fpwipodrs 14267 . . . . . . . . . . . 12  |-  ( t  e.  _V  ->  (toInc `  ( ~P t  i^i 
Fin ) )  e. Dirset
)
8179, 80mp1i 11 . . . . . . . . . . 11  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  (toInc `  ( ~P t  i^i 
Fin ) )  e. Dirset
)
82 inss1 3389 . . . . . . . . . . . 12  |-  ( ~P t  i^i  Fin )  C_ 
~P t
83 sspwb 4223 . . . . . . . . . . . . 13  |-  ( t 
C_  X  <->  ~P t  C_ 
~P X )
8467, 83sylib 188 . . . . . . . . . . . 12  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  ~P t  C_  ~P X )
8582, 84syl5ss 3190 . . . . . . . . . . 11  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  ( ~P t  i^i  Fin )  C_ 
~P X )
86 fvex 5539 . . . . . . . . . . . . 13  |-  (mrCls `  C )  e.  _V
87 imaexg 5026 . . . . . . . . . . . . 13  |-  ( (mrCls `  C )  e.  _V  ->  ( (mrCls `  C
) " ( ~P t  i^i  Fin )
)  e.  _V )
8886, 87ax-mp 8 . . . . . . . . . . . 12  |-  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  e.  _V
8988a1i 10 . . . . . . . . . . 11  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  (
(mrCls `  C ) " ( ~P t  i^i  Fin ) )  e. 
_V )
9075, 78, 81, 85, 89ipodrsima 14268 . . . . . . . . . 10  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  (toInc `  ( (mrCls `  C
) " ( ~P t  i^i  Fin )
) )  e. Dirset )
9190adantlr 695 . . . . . . . . 9  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  (toInc `  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
) )  e. Dirset )
92 imassrn 5025 . . . . . . . . . . . . . 14  |-  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  C_  ran  (mrCls `  C )
93 frn 5395 . . . . . . . . . . . . . . 15  |-  ( (mrCls `  C ) : ~P X
--> C  ->  ran  (mrCls `  C )  C_  C
)
9472, 93syl 15 . . . . . . . . . . . . . 14  |-  ( C  e.  (Moore `  X
)  ->  ran  (mrCls `  C )  C_  C
)
9592, 94syl5ss 3190 . . . . . . . . . . . . 13  |-  ( C  e.  (Moore `  X
)  ->  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  C_  C )
9695adantr 451 . . . . . . . . . . . 12  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  (
(mrCls `  C ) " ( ~P t  i^i  Fin ) )  C_  C )
9788elpw 3631 . . . . . . . . . . . 12  |-  ( ( (mrCls `  C ) " ( ~P t  i^i  Fin ) )  e. 
~P C  <->  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  C_  C )
9896, 97sylibr 203 . . . . . . . . . . 11  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  (
(mrCls `  C ) " ( ~P t  i^i  Fin ) )  e. 
~P C )
9998adantlr 695 . . . . . . . . . 10  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  ( (mrCls `  C
) " ( ~P t  i^i  Fin )
)  e.  ~P C
)
100 simplr 731 . . . . . . . . . 10  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  s ) )
101 fveq2 5525 . . . . . . . . . . . . 13  |-  ( s  =  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  ->  (toInc `  s
)  =  (toInc `  ( (mrCls `  C ) " ( ~P t  i^i  Fin ) ) ) )
102101eleq1d 2349 . . . . . . . . . . . 12  |-  ( s  =  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  ->  ( (toInc `  s )  e. Dirset  <->  (toInc `  (
(mrCls `  C ) " ( ~P t  i^i  Fin ) ) )  e. Dirset ) )
103 unieq 3836 . . . . . . . . . . . . 13  |-  ( s  =  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  ->  U. s  =  U. ( (mrCls `  C ) " ( ~P t  i^i  Fin )
) )
104 id 19 . . . . . . . . . . . . 13  |-  ( s  =  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  ->  s  =  ( (mrCls `  C ) " ( ~P t  i^i  Fin ) ) )
105103, 104eleq12d 2351 . . . . . . . . . . . 12  |-  ( s  =  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  ->  ( U. s  e.  s  <->  U. (
(mrCls `  C ) " ( ~P t  i^i  Fin ) )  e.  ( (mrCls `  C
) " ( ~P t  i^i  Fin )
) ) )
106102, 105imbi12d 311 . . . . . . . . . . 11  |-  ( s  =  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  ->  ( (
(toInc `  s )  e. Dirset  ->  U. s  e.  s )  <->  ( (toInc `  ( (mrCls `  C ) " ( ~P t  i^i  Fin ) ) )  e. Dirset  ->  U. ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  e.  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
) ) ) )
107106rspcva 2882 . . . . . . . . . 10  |-  ( ( ( (mrCls `  C
) " ( ~P t  i^i  Fin )
)  e.  ~P C  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  s ) )  ->  ( (toInc `  ( (mrCls `  C
) " ( ~P t  i^i  Fin )
) )  e. Dirset  ->  U. ( (mrCls `  C
) " ( ~P t  i^i  Fin )
)  e.  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
) ) )
10899, 100, 107syl2anc 642 . . . . . . . . 9  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  ( (toInc `  (
(mrCls `  C ) " ( ~P t  i^i  Fin ) ) )  e. Dirset  ->  U. ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  e.  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
) ) )
10991, 108mpd 14 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  U. ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  e.  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
) )
11071, 109eqeltrd 2357 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  t  e.  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
) )
111 fvelimab 5578 . . . . . . . . 9  |-  ( ( (mrCls `  C )  Fn  ~P X  /\  ( ~P t  i^i  Fin )  C_ 
~P X )  -> 
( t  e.  ( (mrCls `  C ) " ( ~P t  i^i  Fin ) )  <->  E. g  e.  ( ~P t  i^i 
Fin ) ( (mrCls `  C ) `  g
)  =  t ) )
11275, 85, 111syl2anc 642 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  t  e.  C )  ->  (
t  e.  ( (mrCls `  C ) " ( ~P t  i^i  Fin )
)  <->  E. g  e.  ( ~P t  i^i  Fin ) ( (mrCls `  C ) `  g
)  =  t ) )
113112adantlr 695 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  ( t  e.  ( (mrCls `  C ) " ( ~P t  i^i  Fin ) )  <->  E. g  e.  ( ~P t  i^i 
Fin ) ( (mrCls `  C ) `  g
)  =  t ) )
114110, 113mpbid 201 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  E. g  e.  ( ~P t  i^i  Fin ) ( (mrCls `  C ) `  g
)  =  t )
115 eqcom 2285 . . . . . . 7  |-  ( t  =  ( (mrCls `  C ) `  g
)  <->  ( (mrCls `  C ) `  g
)  =  t )
116115rexbii 2568 . . . . . 6  |-  ( E. g  e.  ( ~P t  i^i  Fin )
t  =  ( (mrCls `  C ) `  g
)  <->  E. g  e.  ( ~P t  i^i  Fin ) ( (mrCls `  C ) `  g
)  =  t )
117114, 116sylibr 203 . . . . 5  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  E. g  e.  ( ~P t  i^i  Fin ) t  =  ( (mrCls `  C ) `  g ) )
11811mrefg2 26782 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  ( E. g  e.  ( ~P X  i^i  Fin ) t  =  ( (mrCls `  C ) `  g
)  <->  E. g  e.  ( ~P t  i^i  Fin ) t  =  ( (mrCls `  C ) `  g ) ) )
119118ad2antrr 706 . . . . 5  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  ( E. g  e.  ( ~P X  i^i  Fin ) t  =  ( (mrCls `  C ) `  g )  <->  E. g  e.  ( ~P t  i^i 
Fin ) t  =  ( (mrCls `  C
) `  g )
) )
120117, 119mpbird 223 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  /\  t  e.  C )  ->  E. g  e.  ( ~P X  i^i  Fin ) t  =  ( (mrCls `  C ) `  g ) )
121120ralrimiva 2626 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  ->  A. t  e.  C  E. g  e.  ( ~P X  i^i  Fin )
t  =  ( (mrCls `  C ) `  g
) )
12211isnacs 26779 . . 3  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  A. t  e.  C  E. g  e.  ( ~P X  i^i  Fin )
t  =  ( (mrCls `  C ) `  g
) ) )
12363, 121, 122sylanbrc 645 . 2  |-  ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  s ) )  ->  C  e.  (NoeACS `  X
) )
12455, 123impbii 180 1  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  s ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   ran crn 4690   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255   Fincfn 6863  Moorecmre 13484  mrClscmrc 13485  ACScacs 13487  Dirsetcdrs 14061  toInccipo 14254  NoeACScnacs 26777
This theorem is referenced by:  nacsfix  26787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-tset 13227  df-ple 13228  df-ocomp 13229  df-mre 13488  df-mrc 13489  df-acs 13491  df-preset 14062  df-drs 14063  df-poset 14080  df-ipo 14255  df-nacs 26778
  Copyright terms: Public domain W3C validator